Locally Adapted Hierarchical Basis Preconditioning

This paper develops locally adapted hierarchical basis functions for effectively preconditioning large optimization problems that arise in computer graphics applications such as tone mapping, gradientdomain blending, colorization, and scattered data interpolation. By looking at the local structure of the coefficient matrix and performing a recursive set of variable eliminations, combined with a simplification of the resulting coarse level problems, we obtain bases better suited for problems with inhomogeneous (spatially varying) data, smoothness, and boundary constraints. Our approach removes the need to heuristically adjust the optimal number of preconditioning levels, significantly outperforms previously proposed approaches, and also maps cleanly onto data-parallel architectures such as modern GPUs.

PDF file

In  ACM Transactions on Graphics

Publisher  Association for Computing Machinery, Inc.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM’s Digital Library --http://www.acm.org/dl/.


> Publications > Locally Adapted Hierarchical Basis Preconditioning