Handling Occlusions in Dense Multi-view Stereo

While stereo matching was originally formulated as the recovery of 3D shape from a pair of images, it is now generally recognized that using more than two images can dramatically improve the quality of the reconstruction. Unfortunately, as more images are added, the prevalence of semioccluded regions (pixels visible in some but not all images) also increases. In this paper, we propose some novel techniques to deal with this problem. Our first idea is to use a combination of shiftable windows and a dynamically selected subset of the neighboring images to do the matches. Our second idea is to explicitly label occluded pixels within a global energy minimization framework, and to reason about visibility within this framework so that only truly visible pixels are matched. Experimental results show a dramatic improvement using the first idea over conventional multibaseline stereo, especially when used in conjunction with a global energy minimization technique. These results also show that explicit occlusion labeling and visibility reasoning do help, but not significantly, if the spatial and temporal selection is applied first.

PDF file

In  IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'2001)

Publisher  IEEE Computer Society
Copyright © 2007 IEEE. Reprinted from IEEE Computer Society. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.


AddressKauai, Hawaii
> Publications > Handling Occlusions in Dense Multi-view Stereo