Video and Image Bayesian Demosaicing With A Two Color Image Prior

Eric Bennett, Matthew Uyttendaele, Lawrence Zitnick, Richard Szeliski, and Sing Bing Kang

Abstract

The demosaicing process converts single-CCD color representations of one color channel per pixel into full per-pixel RGB. We introduce a Bayesian technique for demosaicing Bayer color filter array patterns that is based on a statistically-obtained two color per-pixel image prior. By modeling all local color behavior as a linear combination of two fully specified RGB triples, we avoid color fringing artifacts while preserving sharp edges. Our grid-less, floating-point pixel location architecture can process both single images and multiple images from video within the same framework, with multiple images providing denser color samples and therefore better color reproduction with reduced aliasing. An initial clustering is performed to determine the underlying local two color model surrounding each pixel. Using a product of Gaussians statistical model, the underlying linear blending ratio of the two representative colors at each pixel is estimated, while simultaneously providing noise reduction. Finally, we show that by sampling the image model at a finer resolution than the source images during reconstruction, our continuous demosaicing technique can super-resolve in a single step.

Details

Publication typeInproceedings
Published inNinth European Conference on Computer Vision (ECCV 2006)
Pages508-521
Volume1
AddressGraz
PublisherSpringer-Verlag
> Publications > Video and Image Bayesian Demosaicing With A Two Color Image Prior