Reclaiming Space from Duplicate Files in a Serverless Distributed File System

The Farsite distributed file system provides availability by replicating each file onto multiple desktop computers. Since this replication consumes significant storage space, it is important to reclaim used space where possible. Measurement of over 500 desktop file systems shows that nearly half of all consumed space is occupied by duplicate files. We present a mechanism to reclaim space from this incidental duplication to make it available for controlled file replication. Our mechanism includes 1) convergent encryption, which enables duplicate files to coalesced into the space of a single file, even if the files are encrypted with different users' keys, and 2) SALAD, a Self-Arranging, Lossy, Associative Database for aggregating file content and location information in a decentralized, scalable, fault-tolerant manner. Large-scale simulation experiments show that the duplicate-file coalescing system is scalable, highly effective, and fault-tolerant.

PDF file

In  Proceedings of 22nd International Conference on Distributed Computing Systems (ICDCS)

Publisher  Institute of Electrical and Electronics Engineers, Inc.
© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.


> Publications > Reclaiming Space from Duplicate Files in a Serverless Distributed File System