Integer Linear Programming Inference for Conditional Random Fields

Inference in Conditional Random Fields and Hidden Markov Models is done using the Viterbi algorithm, an efficient dynamic programming algorithm. In many cases, general (non-local and non-sequential) constraints may exist over the output sequence, but cannot be incorporated and exploited in a natural way by this inference procedure. This paper proposes a novel inference procedure based on integer linear programming (ILP) and extends CRF models to naturally and efficiently support general constraint structures. For sequential constraints, this procedure reduces to simple linear programming as the inference process. Experimental evidence is supplied in the context of an important NLP problem, semantic role labeling.

PDF file

In  Proceedings of the 22nd International Conference on Machine Learning (ICML-2005)

Publisher  Association for Computing Machinery, Inc.
Copyright © 2005 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or The definitive version of this paper can be found at ACM’s Digital Library --


> Publications > Integer Linear Programming Inference for Conditional Random Fields