Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Finding Optimal Bayesian Networks

David Maxwell Chickering and Christopher Meek


In this paper, we derive optimality results for greedy Bayesian-network search algorithms that perform single-edge modifications at each step and use asymptotically consistent scoring criteria. Our results extend those of Meek (1997) and Chickering (2002), who demonstrate that in the limit of large datasets, if the generative distribution is perfect with respect to a DAG defined over the observable variables, such search algorithms will identify this optimal (i.e. generative) DAG model. We relax their assumption about the generative distribution, and assume only that this distribution satisfies the composition property over the observable variables, which is a more realistic assumption for real domains. Under this assumption, we guarantee that the search algorithms identify an inclusion-optimal model; that is, a model that (1) contains the generative distribution and (2) has no sub-model that contains this distribution. In addition, we show that the composition property is guaranteed to hold whenever the dependence relationships in the generative distribution can be characterized by paths between singleton elements in some generative graphical model (e.g. a DAG, a chain graph, or a Markov network) even when the generative model includes unobserved variables, and even when the observed data is subject to selection bias.


Publication typeInproceedings
Published inProceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, ® Alberta, Edmonton
PublisherMorgan Kaufmann
> Publications > Finding Optimal Bayesian Networks