A Nonstationary Poisson View of Internet Traffic

Since the identification of long-range dependence in network traffic ten years ago, its consistent appearance across numerous measurement studies has largely discredited Poissonbased models. However, since that original data set was collected, both link speeds and the number of Internet-connected hosts have increased by more than three orders of magnitude. Thus, we now revisit the Poisson assumption, by studying a combination of historical traces and new measurements obtained from a major backbone link belonging to a Tier 1 ISP. We show that unlike the older data sets, current network traffic can be well represented by the Poisson model for sub-second time scales. At multi-second scales, we find a distinctive piecewise-linear non-stationarity, together with evidence of long-range dependence. Combining our observations across both time scales leads to a time-dependent Poisson characterization of network traffic that, when viewed across very long time scales, exhibits the observed long-range dependence. This traffic characterization reconciliates the seemingly contradicting observations of Poisson and long-memory traffic characteristics. It also seems to be in general agreement with recent theoretical models for large-scale traffic aggregation.

PDF file


Publisher  IEEE Communications Society
Copyright © 2007 IEEE. Reprinted from IEEE Communications Society. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.


> Publications > A Nonstationary Poisson View of Internet Traffic