Discovering frequent episodes and learning Hidden Markov Models: A formal connection

This paper establishes a formal connection between two common, but previously unconnected methods for analyzing data streams: discovering frequent episodes in a computer science framework and learning generative models in a statistics framework. We introduce a special class of discrete Hidden Markov Models (HMMs), called Episode Generating HMMs (EGHs), and associate each episode with a unique EGH. We prove that, given any two episodes, the EGH that is more likely to generate a given data sequence is the one associated with the more frequent episode. To be able to establish such a relationship, we define a new measure of frequency of an episode, based on what we call nonoverlapping occurrences of the episode in the data. An efficient algorithm is proposed for counting the frequencies for a set of episodes. Through extensive simulations, we show that our algorithm is both effective and more efficient than current methods for frequent episode discovery. We also show how the association between frequent episodes and EGHs can be exploited to assess the significance of frequent episodes discovered and illustrate empirically how this idea may be used to improve the efficiency of the frequent episode discovery.

LSU05-final.pdf
PDF file

In  IEEE Transactions on Knowledge and Data Engineering

Publisher  IEEE Computer Society
Copyright © 2007 IEEE. Reprinted from IEEE Computer Society. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Details

TypeArticle
Pages1505–1517
Volume17
Number11
> Publications > Discovering frequent episodes and learning Hidden Markov Models: A formal connection