Sparse and Semi-supervised Visual Mapping with the S3GP

This paper is about mapping images to continuous output spaces using powerful Bayesian learning techniques. A sparse, semi-supervised Gaussian process regression model (S3GP) is introduced which learns a mapping using only partially labelled training data. We show that sparsity bestows efficiency on the S3GP which requires minimal CPU utilization for real-time operation; the predictions of uncertainty made by the S3GP are more accurate than those of other models leading to considerable performance improvements when combined with a probabilistic filter; and the ability to learn from semi-supervised data simplifies the process of collecting training data. The S3GP uses a mixture of different image features: this is also shown to improve the accuracy and consistency of the mapping. A major application of this work is its use as a gaze tracking system in which images of a human eye are mapped to screen coordinates: in this capacity our approach is efficient, accurate and versatile.

PDF file

In  Proc. CVPR

Publisher  IEEE Computer Society
Copyright © 2007 IEEE. Reprinted from IEEE Computer Society. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to By choosing to view this document, you agree to all provisions of the copyright laws protecting it.



Previous Versions

Oliver Williams. Bayesian Learning for Efficient Visual Inference, September 2005.

> Publications > Sparse and Semi-supervised Visual Mapping with the S3GP