Block-Level Link Analysis

Link Analysis has shown great potential in improving the performance of web search. PageRank and HITS are two of the most popular algorithms. Most of the existing link analysis algorithms treat a web page as a single node in the web graph. However, in most cases, a web page contains multiple semantics and hence the web page might not be considered as the atomic node. In this paper, the web page is partitioned into blocks using the visionbased page segmentation algorithm. By extracting the page-toblock, block-to-page relationships from link structure and page layout analysis, we can construct a semantic graph over the WWW such that each node exactly represents a single semantic topic. This graph can better describe the semantic structure of the web. Based on block-level link analysis, we proposed two new algorithms, Block Level PageRank and Block Level HITS, whose performances we study extensively using web data.

22.pdf
PDF file

Publisher  Association for Computing Machinery, Inc.
Copyright © 2004 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM’s Digital Library –http://www.acm.org/dl/.

Details

TypeInproceedings
URLhttp://www.acm.org/
Pages8
NumberMSR-TR-2004-50
InstitutionMicrosoft Research
> Publications > Block-Level Link Analysis