Balanced Allocations: The Weighted Case

Kunal Talwar and Udi Wieder

June 2007

We investigate balls-and-bins processes where *m* weighted balls are placed into *n* bins using the “power of two choices” paradigm, whereby a ball is inserted into the less loaded of two randomly chosen bins. The case where each of the *m* balls has unit weight had been studied extensively. In a seminal paper Azar ηl showed that when *m=n* the most loaded bin has *Θ(log log n)* balls with high probability. Surprisingly, the gap in load between the heaviest bin and the average bin does not increase with *m* and was shown by Berenbrink ηl to be *Θ(log log n)* with high probability for arbitrarily large *m*. We generalize this result to the weighted case where balls have weights drawn from an arbitrary weight distribution. We show that as long as the weight distribution has finite second moment and satisfies a mild technical condition, the gap between the weight of the heaviest bin and the weight of the average bin is independent of the number balls thrown. This is especially striking when considering heavy tailed distributions such as Power-Law and Log-Normal distributions. In these cases, as more balls are thrown, heavier and heavier weights are encountered. Nevertheless with high probability, the imbalance in the load distribution does not increase. Furthermore, if the fourth moment of the weight distribution is finite, the expected value of the gap is shown to be independent of the number of balls.

Publication type | Inproceedings |

Published in | ACM Symposium on Theory of Computing (STOC) |

Address | San Diego, CA |

Publisher | Association for Computing Machinery, Inc. Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM’s Digital Library --http://www.acm.org/dl/. |

- A tight bound on approximating arbitrary metrics by tree metrics
- Changing Bases: Multistage Optimization for Matroids and Matchings
- Trace reconstruction with constant deletion probability and related results

> Publications > Balanced Allocations: The Weighted Case