Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Efficient URL caching for World Wide Web crawling

Andrei Z. Broder, Marc Najork, and Janet L. Wiener

Abstract

Crawling the web is deceptively simple: the basic algorithm is (a) Fetch a page (b) Parse it to extract all linked URLs (c) For all the URLs not seen before, repeat (a)-(c). However, the size of the web (estimated at over 4 billion pages) and its rate of change (estimated at 7% per week) move this plan from a trivial programming exercise to a serious algorithmic and system design challenge. Indeed, these two factors alone imply that for a reasonably fresh and complete crawl of the web, step (a) must be executed about a thousand times per second, and thus the membership test (c) must be done well over ten thousand times per second against a set too large to store in main memory. This requires a distributed architecture, which further complicates the membership test. A crucial way to speed up the test is to cache, that is, to store in main memory a (dynamic) subset of the "seen" URLs. The main goal of this paper is to carefully investigate several URL caching techniques for web crawling. We consider both practical algorithms: random replacement, static cache, LRU, and CLOCK, and theoretical limits: clairvoyant caching and infinite cache. We performed about 1,800 simulations using these algorithms with various cache sizes, using actual log data extracted from a massive 33 day web crawl that issued over one billion HTTP requests. Our main conclusion is that caching is very effective - in our setup, a cache of roughly 50,000 entries can achieve a hit rate of almost 80%. Interestingly, this cache size falls at a critical point: a substantially smaller cache is much less effective while a substantially larger cache brings little additional benefit. We conjecture that such critical points are inherent to our problem and venture an explanation for this phenomenon.

Details

Publication typeInproceedings
Published inProceedings of the 12th International World Wide Web Conference (WWW)
AddressBudapest, Hungary
> Publications > Efficient URL caching for World Wide Web crawling