Uncertainty Decoding with SPLICE for Noise Robust Speech Recognition

Speech recognition front end noise removal algorithms have, in the past, estimated clean speech features from corrupted speech features. The accuracy of the noise removal process varies from frame to frame, and from dimension to dimension in the feature stream, due in part to the instantaneous SR of the input. In this paper, we show that localized knowledge of the accuracy of the noise removal process can be directly incorporated into the Gaussian evaluation within the decoder, to produce higher recognition accuracies. To prove this concept, we modify the SPLICE algorithm to output uncertainty information, and show that the combination of SPLICE with uncertainty decoding can remove 74.2% of the errors in a subset of the Aurora2 task.

2002-droppo-icassp.pdf
PDF file

In  Proc. ICASSP

Publisher  Institute of Electrical and Electronics Engineers, Inc.
© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Details

TypeInproceedings
AddressFlorida
> Publications > Uncertainty Decoding with SPLICE for Noise Robust Speech Recognition