Evaluation of SPLICE on the Aurora 2 and 3 Tasks

Stereo-based Piecewise Linear Compensation for Environments (SPLICE) is a general framework for removing distortions from noisy speech cepstra. It contains a non-parametric model for cepstral corruption, which is learned from two channels of training data. We evaluate SPLICE on both the Aurora 2 and 3 tasks. These tasks consist of digit sequences in five European languages. Noise corruption is both synthetic (Aurora 2) and realistic (Aurora 3). For both the Aurora 2 and 3 tasks, we use the same training and testing procedure provided with the corpora. By holding the back-end constant, we ensure that any increase in word accuracy is due to our front-end processing techniques. In the Aurora 2 task, we achieve a 76.86% average decrease in word error rate with clean acoustic models, and an overall improvement of 62.63%. For the Aurora 3 task, we achieve a 75.06% average decrease in word error rate for the high-mismatch experiment, and an overall improvement of 47.19%.

2002-droppo-icslpa.pdf
PDF file

In  Proc. International Conference on Spoken Language Processing

Publisher  International Speech Communication Association
© 2007 ISCA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the ISCA and/or the author.

Details

TypeInproceedings
AddressDenver, Colorado
> Publications > Evaluation of SPLICE on the Aurora 2 and 3 Tasks