Multi-view Machines

  • Bokai Cao ,
  • Hucheng Zhou ,
  • Guoqiang Li ,
  • Philip Yu

Published by WSDM

With rapidly growing amount of data available on the web, it becomes increasingly likely to obtain data from different perspectives for multi-view learning. Some successive examples of web applications include recommendation and target advertising. Specifically, to predict whether a user will click an ad in a query context, there are available features extracted from user profile, ad information and query description, and each of them can only capture part of the task signals from a particular aspect/view. Different views provide complementary information to learn a practical model for these applications. Therefore, an effective integration of the multi-view information is critical to facilitate the learning performance.

In this paper, we propose a general predictor, named multiview machines (MVMs), that can effectively explore the full-order interactions between features from multiple views. A joint factorization is applied for the interaction parameters which makes parameter estimation more accurate under sparsity and renders the model with the capacity to avoid overfitting. Moreover, MVMs can work in conjunction with different loss functions for a variety of machine learning tasks. The advantages of MVMs are illustrated through comparison with other methods for multi-view prediction, including support vector machines (SVMs), support tensor machines (STMs) and factorization machines (FMs).

A stochastic gradient descent method and a distributed implementation on Spark are presented to learn the MVM model. Through empirical studies on two real-world web application datasets, we demonstrate the effectiveness of MVMs on modeling feature interactions in multi-view data. A 3.51% accuracy improvement is shown on MVMs over FMs for the problem of movie rating prediction, and 0.57% for ad click prediction.