Co-learning ofWord Representations and Morpheme Representations

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan Liu

Abstract

The techniques of using neural networks to learn distributed word representations (i.e., word embeddings) have been used to solve a variety of natural language processing tasks. The recently proposed methods, such as CBOW and Skip-gram, have demonstrated their effectiveness in learning word embeddings based on context information such that the obtained word embeddings can capture both semantic and syntactic relationships between words. However, it is quite challenging to produce high-quality word representations for rare or unknown words due to their insufficient context information. In this paper, we propose to leverage morphological knowledge to address this problem. Particularly, we introduce the morphological knowledge as both additional input representation and auxiliary supervision to the neural network framework. As a result, beyond word representations, the proposed neural network model will produce morpheme representations, which can be further employed to infer the representations of rare or unknown words based on their morphological structure. Experiments on an analogical reasoning task and several word similarity tasks have demonstrated the effectiveness of our method in producing high-quality words embeddings compared with the state-of-the-art methods.

Details

Publication typeInproceedings
> Publications > Co-learning ofWord Representations and Morpheme Representations