Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Learning Deep Representations for Graph Clustering

Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu

Abstract

Recently deep learning has been successfully adopted in many applications such as speech recognition and image classification. In this work, we explore the possibility of employing deep learning in graph clustering. We propose a simple method, which first learns a nonlinear embedding of the original graph by stacked autoencoder, and then runs k -means algorithm on the embedding to obtain clustering result. We show that this simple method has solid theoretical foundation, due to the similarity between autoencoder and spectral clustering in terms of what they actually optimize. Then, we demonstrate that the proposed method is more efficient and flexible than spectral clustering. First, the computational complexity of autoencoder is much lower than spectral clustering: the former can be linear to the number of nodes in a sparse graph while the latter is super quadratic due to eigenvalue decomposition. Second, when additional sparsity constraint is imposed, we can simply employ the sparse autoencoder developed in the literature of deep learning; however, it is nonstraightforward to implement a sparse spectral method. The experimental results on various graph datasets show that the proposed method significantly outperforms conventional spectral clustering, which clearly indicates the effectiveness of deep learning in graph clustering.

Details

Publication typeInproceedings
> Publications > Learning Deep Representations for Graph Clustering