Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Improving Quantum Algorithms for Quantum Chemistry

M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer

Abstract

We present several improvements to the standard Trotter-Suzuki based algorithms used in the simulation of quantum chemistry on a quantum computer. First, we modify how Jordan-Wigner transformations are implemented to reduce their cost from linear or logarithmic in the number of orbitals to a constant. Our modification does not require additional ancilla qubits. Then, we demonstrate how many operations can be parallelized, leading to a further linear decrease in the parallel depth of the circuit, at the cost of a small constant factor increase in number of qubits required. Thirdly, we modify the term order in the Trotter-Suzuki decomposition, significantly reducing the error at given Trotter-Suzuki timestep. A final improvement modifies the Hamiltonian to reduce errors introduced by the non-zero Trotter-Suzuki timestep. All of these techniques are validated using numerical simulation and detailed gate counts are given for realistic molecules.

Details

Publication typeArticle
Published inQIC, in press.
> Publications > Improving Quantum Algorithms for Quantum Chemistry