Learning Continuous Phrase Representations for Translation Modeling

Jianfeng Gao, Xiaodong He, Wen-tau Yih, and Li Deng

Abstract

This paper tackles the sparsity problem in estimating phrase translation probabilities by learning continuous phrase representations, whose distributed nature enables the sharing of related phrases in their repre-sentations. A pair of source and target phrases are projected into continuous-valued vector representations in a low-dimensional latent space, where their translation score is computed by the distance between the pair in this new space. The projection is performed by a neural network whose weights are learned on parallel training data. Experimental evaluation has been performed on two WMT translation tasks. Our best result improves the performance of a state-of-the-art phrase-based statistical machine translation system trained on WMT 2012 French-English data by up to 1.3 BLEU points.

Details

Publication typeInproceedings
Published inProceedings of ACL
PublisherAssociation for Computational Linguistics
> Publications > Learning Continuous Phrase Representations for Translation Modeling