Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Zero-Shot Learning and Clustering for Semantic Utterance Classification

Yann Dauphin, Gokhan Tur, Dilek Hakkani-Tur, and Larry Heck

Abstract

We propose a novel zero-shot learning method for semantic utterance classification (SUC). It learns a classifier f : X -> Y for problems where none of the semantic categories Y are present in the training set. The framework uncovers the link between categories and utterances through a semantic space. We show that this semantic space can be learned by deep neural networks trained on large amounts of search engine query log data. What’s more, we propose a novel method that can learn discriminative semantic features without supervision. It uses the zero-shot learning framework to guide the learning of the semantic features. We demonstrate the effectiveness of the zero-shot semantic learning algorithm on the SUC dataset collected by [1]. Furthermore, we achieve state-of-the-art results by combining the semantic features with a supervised method.

Details

Publication typeInproceedings
PublisherInternational Conference on Learning Representations (ICLR)
> Publications > Zero-Shot Learning and Clustering for Semantic Utterance Classification