Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Bilingual Data Cleaning for SMT using Graph-based RandomWalk

Lei Cui, Dongdong Zhang, Shujie Liu, Mu Li, and Ming Zhou


The quality of bilingual data is a key factor in Statistical Machine Translation (SMT). Low-quality bilingual data tends to produce incorrect translation knowledge and also degrades translation modeling performance. Previous work often used supervised learning methods to filter lowquality data, but a fair amount of human labeled examples are needed which are not easy to obtain. To reduce the reliance on labeled examples, we propose an unsupervised method to clean bilingual data. The method leverages the mutual reinforcement between the sentence pairs and the extracted phrase pairs, based on the observation that better sentence pairs often lead to better phrase extraction and vice versa. End-to-end experiments show that the proposed method substantially improves the performance in largescale Chinese-to-English translation tasks.


Publication typeInproceedings
> Publications > Bilingual Data Cleaning for SMT using Graph-based RandomWalk