Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme

Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig

Abstract

In 1996, Hoffstein, Pipher and Silverman introduced an efficient lattice based encryption scheme dubbed NTRUEnc. Unfortunately, this scheme lacks a proof of security. However, in 2011, Stehle and Steinfeld showed how to modify NTRUEnc to reduce security to standard problems in ideal lattices. In 2012, Lopez-Alt, Tromer and Vaikuntanathan proposed a fully homomorphic scheme based on this modified system. However, to allow homomorphic operations and prove security, a non-standard assumption is required. In this paper, we show how to remove this non-standard assumption via techniques introduced by Brakerski and construct a new fully homomorphic encryption scheme from the Stehle and Steinfeld version based on standard lattice assumptions and a circular security assumption. The scheme is scale-invariant and therefore avoids modulus switching and the size of ciphertexts is one ring element. Moreover, we present a practical variant of our scheme, which is secure under stronger assumptions, along with parameter recommendations and promising implementation results. Finally, we present an approach for encrypting larger input sizes by extending ciphertexts to several ring elements via the CRT on the message space.

Details

Publication typeInproceedings
Published inInternational Conference On Cryptography and Coding
PublisherSpringer Verlag
> Publications > Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme