Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Context-Dependent Conceptualization

Dongwoo Kim, Haixun Wang, and Alice Oh


Conceptualization seeks to map a short text to a set of concepts as a mechanism of understanding text. Most of prior research in conceptualization uses human-crafted knowledge bases that map instances to concepts. Such approaches to conceptualization have the limitation that the mappings are not context sensitive. To overcome this limitation, we propose a framework in which we harness the power of a probabilistic topic model which inherently captures the semantic relations between words. By combining latent Dirichlet allocation, a widely used topic model with Probase, a large-scale probabilistic knowledge base, we develop a corpus-based framework for context-dependent conceptualization. Through this simple but powerful framework, we improve conceptualization and enable a wide range of applications that rely on semantic understanding of short texts, including frame element prediction, word similarity in context, ad-query similarity, and query similarity.


Publication typeInproceedings
Published inIJCAI

Newer versions

Zhongyuan Wang, Haixun Wang, Ji-Rong Wen, and Yanghua Xiao. An Inference Approach to Basic Level of Categorization, ACM – Association for Computing Machinery, October 2015.

Zhongyuan Wang and Haixun Wang. Understanding Short Texts, August 2016.

> Publications > Context-Dependent Conceptualization