Verified Indifferentiable Hashing into Elliptic Curves

Gilles Barthe, Benjamin Gr├ęgoire, Sylvain Heraud, Federico Olmedo, and Santiago Zanella-B├ęguelin

Abstract

Many cryptographic systems based on elliptic curves are proven secure in the Random Oracle Model, assuming there exist probabilistic functions that map elements in some domain (e.g. bitstrings) onto uniformly and independently distributed points in a curve. When implementing such systems, and in order for the proof to carry over to the implementation, those mappings must be instantiated with concrete constructions whose behavior does not deviate significantly from random oracles. In contrast to other approaches to public-key cryptography, where candidates to instantiate random oracles have been known for some time, the first generic construction for hashing into ordinary elliptic curves indifferentiable from a random oracle was put forward only recently by Brier et al. We present a machine-checked proof of this construction. The proof is based on an extension of the CertiCrypt framework with logics and mechanized tools for reasoning about approximate forms of observational equivalence, and integrates mathematical libraries of group theory and elliptic curves

Details

Publication typeInproceedings
Published in1st International Conference on Principles of Security and Trust, POST 2012
URLhttp://dx.doi.org/10.1007/978-3-642-28641-4_12
Pages209-228
Volume7215
SeriesLecture Notes in Computer Science
PublisherSpringer
> Publications > Verified Indifferentiable Hashing into Elliptic Curves