Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images

Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew Fitzgibbon

Abstract

We address the problem of inferring the pose of an RGB-D camera relative to a known 3D scene, given only a single acquired image. Our approach employs a regression forest that is capable of inferring an estimate of each pixel’s correspondence to 3D points in the scene’s world coordinate frame. The forest uses only simple depth and RGB pixel comparison features, and does not require the computation of feature descriptors. The forest is trained to be capable of predicting correspondences at any pixel, so no interest point detectors are required. The camera pose is inferred using a robust optimization scheme. This starts with an initial set of hypothesized camera poses, constructed by applying the forest at a small fraction of image pixels. Preemptive RANSAC then iterates sampling more pixels at which to evaluate the forest, counting inliers, and refining the hypothesized poses. We evaluate on several varied scenes captured with an RGB-D camera and observe that the proposed technique achieves highly accurate relocalization and substantially out-performs two state of the art baselines.

Details

Publication typeInproceedings
Published inProc. Computer Vision and Pattern Recognition (CVPR)
PublisherIEEE
> Publications > Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images