Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Multifidelity surrogate modeling of experimental and computational aerodynamic data sets

Y. Kuya, K. Takeda, X. Zhang, and A. I. J. Forrester

Abstract

This study presents a multifidelity surrogate modeling approach, combining experimental and computational aerodynamic data sets. A multifidelity cokriging regression surrogate model is used. This study highlights how lowfidelity data from computations contribute to improving surrogate models built with limited high-fidelity data from experiments. Various types of sampling design for low fidelity data are also examined to study the impact of characteristics of the sampling design on the final surrogate models. Replication, blocking, and randomization techniques originally developed for design of experiments are used to minimize random and systematic errors. Surrogate models representing the performance of an inverted wing with counter-rotating vortex generators in ground effect are constructed, where design variables of the wing ride height and incidence and the response of sectional downforce are examined. A cokriging regression containing 12 experimental and 25 computational data points sampled with a Latin hypercube design shows the best performance here, capturing general characteristics of the target map well.

Details

Publication typeArticle
Published inAIAA Journal
URLhttp://eprints.soton.ac.uk/177041/
PublisherAmerican Institute for Aeronautics & Astronautics
> Publications > Multifidelity surrogate modeling of experimental and computational aerodynamic data sets