Learning Hash Functions for Cross-View Similarity Search

Many applications in Multilingual and Multimodal Information Access involve searching large databases of high dimensional data objects with multiple (conditionally independent) views. In this work we consider the problem of learning hash functions for similarity search across the views for such applications. We propose a principled method for learning a hash function for each view given a set of multiview training data objects. The hash functions map similar objects to similar codes across the views thus enabling cross-view similarity search. We present results from an extensive empirical study of the proposed approach which demonstrate its effectiveness on Japanese language People Search and Multilingual People Search problems.

[12/07/2011: Fixed the typographical errors in the IJCAI version of the paper that confused some readers. Thank you Abhishek Sharma and Bin Li for bringing the errors to my notice.]

PDF file

In  IJCAI-11

Publisher  IJCAI


> Publications > Learning Hash Functions for Cross-View Similarity Search