Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Path selection and multipath congestion control

Peter Key, Laurent Massoulie, and Don Towsley


In this paper, we investigate the benefits that accrue from the use of multiple paths by a session coupled with rate control over those paths. In particular, we study data transfers under two classes of multipath control, coordinated control where the rates over the paths are determined as a function of all paths, and uncoordinated control where the rates are determined independently over each path. We show that coordinated control exhibits desirable load balancing properties; for a homogeneous static random paths scenario, we show that the worst-case throughput performance of uncoordinated control behaves as if each user has but a single path (scaling like log(log(N))/log(N) where N is the system size, measured in number of resources), whereas coordinated control yields a worst-case throughput allocation bounded away from zero. We then allow users to change their set of paths and introduce the notion of a Nash equilibrium. We show that both coordinated and uncoordinated control lead to Nash equilibria corresponding to desirable welfare maximizing states, provided in the latter case, the rate controllers over each path do not exhibit any round-trip time (RTT) bias (unlike TCP Reno). Finally, we show in the case of coordinated control that more paths are better, leading to greater welfare states and throughput capacity, and that simple path reselection polices that shift to paths with higher net benefit can achieve these states.


Publication typeInproceedings
Published inCommunications of the ACM
> Publications > Path selection and multipath congestion control