SenseLess: A Database-Driven White Spaces Network

Rohan Murty, Ranveer Chandra, Thomas Moscibroda, and Paramvir Bahl

Abstract

The most recent FCC ruling proposes relying on a database of incumbents as the primary means of determining white space availability at any white spaces device (WSD). While the ruling provides broad guidelines for the database, the specifics of its design, features, implementation, and use are yet to be determined. Furthermore, architecting a network where all WSDs rely on the database raises several systems and networking challenges that have remained unexplored. Also, the ruling treats the database only as a storehouse for incumbents. We believe that the mandated use of the database has an additional opportunity: a means to dynamically manage the RF spectrum. Motivated by this opportunity, in this paper we present SenseLess, a database driven white spaces network. As suggested by its very name, in SenseLess, WSDs obviate the need to sense the spectrum by relying entirely on a database service to determine white spaces availability. The service, using a combination of an up-to-date database of incumbents, sophisticated signal propagation modeling, and an efficient content dissemination mechanism ensures efficient, scalable, and safe white space network operation. We build, deploy, and evaluate SenseLess and compare our results to ground truth spectrum measurements. We present the unique system design considerations that arise due to operating over the white spaces. We also evaluate its efficiency and scalability. To the best of our knowledge, this is the first paper that identifies and examines the systems and networking challenges that arise from operating a white space network, which is solely dependent on a channel occupancy database.

Details

Publication typeInproceedings
Published in6th IEEE Symposium on Dynamic Spectrum Access Networks (DySpan)
PublisherInstitute of Electrical and Electronics Engineers, Inc.
> Publications > SenseLess: A Database-Driven White Spaces Network