Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Dependence-aware transactional memory for increased concurrency

Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel

Abstract

Abstract—Transactional memory (TM) is a promising paradigm for helping programmers take advantage of emerging multicore platforms. Though they perform well under low contention, hardware TM systems have a reputation of not performing well under high contention, as compared to locks. This paper presents a model and implementation of dependence-aware transactional memory (DATM), a novel solution to the problem of scaling under contention. Unlike many proposals to deal with write-shared data (which arise in common data structures like counters and linked lists), DATM operates transparently to the programmer. The main idea in DATM is to accept any transaction execution interleaving that is conflict serializable, including interleavings that contain simple conflicts. Current TM systems reduce useful concurrency by restarting conflicting transactions, even if the execution interleaving is conflict serializable. DATM manages dependences between uncommitted transactions, sometimes forwarding data between them to safely commit conflicting transactions. The evaluation of our prototype shows that DATM increases concurrency, for example by reducing the runtime of STAMP benchmarks by up to 39% and reducing transaction restarts by up to 94%.

Details

Publication typeInproceedings
Published inMICRO
Pages246-257
> Publications > Dependence-aware transactional memory for increased concurrency