Semantic Subtyping with an SMT Solver

We study a first-order functional language with the novel combination of the ideas of refinement type (the subset of a type to satisfy a Boolean expression) and type-test (a Boolean expression testing whether a value belongs to a type). Our core calculus can express a rich variety of typing idioms; for example, intersection, union, negation, singleton, nullable, variant, and algebraic types are all derivable. We formulate a semantics in which expressions denote terms, and types are interpreted as first-order logic formulas. Subtyping is defined as valid implication between the semantics of types. The formulas are interpreted in a specific model that we axiomatize using standard first-order theories. On this basis, we present a novel type-checking algorithm able to eliminate many dynamic tests and to detect many errors statically. The key idea is to rely on an SMT solver to compute subtyping efficiently. Moreover, interpreting types as formulas allows us to call the SMT solver at run-time to compute instances of types.

In  Proceedings of 15th ACM SIGPLAN International Conference on Functional Programming

Publisher  Association for Computing Machinery, Inc.
Copyright © 2010 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or The definitive version of this paper can be found at ACM’s Digital Library --


> Publications > Semantic Subtyping with an SMT Solver