Binary Coding of Speech Spectrograms Using a Deep Auto-encoder

This paper reports our recent exploration of the layer-by-layer learning strategy for training a multi-layer generative model of patches of speech spectrograms. The top layer of the generative model learns binary codes that can be used for efficient compression of speech and could also be used for scalable speech recognition or rapid speech content retrieval. Each layer of the generative model is fully connected to the layer below and the weights on these connections are pre-trained efficiently by using the contrastive divergence approximation to the log likelihood gradient. After layer-by-layer pre-training we “unroll” the generative model to form a deep auto-encoder, whose parameters are then fine-tuned using back-propagation. To reconstruct the full-length speech spectrogram, individual spectrogram segments predicted by their respective binary codes are combined using an overlap-and-add method. Experimental results on speech spectrogram coding demonstrate that the binary codes produce a log-spectral distortion that is approximately 2 dB lower than a sub-band vector quantization technique over the entire frequency range of wide-band speech.

PDF file

In  Interspeech 2010

Publisher  International Speech Communication Association
© 2007 ISCA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the ISCA and/or the author.


> Publications > Binary Coding of Speech Spectrograms Using a Deep Auto-encoder