Image Deblurring using Inertial Measurement Sensors

Neel Joshi, Sing Bing Kang, C. Lawrence Zitnick, and Richard Szeliski

Abstract

We present a deblurring algorithm that uses a hardware attachment coupled with a natural image prior to deblur images from consumer cameras. Our approach uses a combination of inexpensive gyroscopes and accelerometers in an energy optimization framework to estimate a blur function from the camera’s acceleration and angular velocity during an exposure. We solve for the camera motion at a high sampling rate during an exposure and infer the latent image using a joint optimization. Our method is completely automatic, handles per-pixel, spatially-varying blur, and out-performs the current leading image-based methods. Our experiments show that it handles large kernels – up to at least 100 pixels, with a typical size of 30 pixels. We also present a method to perform “ground-truth” measurements of camera motion blur. We use this method to validate our hardware and deconvolution approach. To the best of our knowledge, this is the first work that uses 6 DOF inertial sensors for dense, per-pixel spatially-varying image deblurring and the first work to gather dense ground-truth measurements for camera-shake blur.

Details

Publication typeArticle
Published inACM Transactions on Graphics (SIGGRAPH)
URLhttp://research.microsoft.com/en-us/um/redmond/groups/ivm/imudeblurring/
Volume29
Number3
PublisherAssociation for Computing Machinery, Inc.
> Publications > Image Deblurring using Inertial Measurement Sensors