Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit Feedback

Alekh Agarwal, Ofer Dekel, and Lin Xiao

June 2010

Bandit convex optimization is a special case of online convex optimization with partial information. In this setting, a player attempts to minimize a sequence of adversarially generated convex loss functions, while only observing the value of each function at a single point. In some cases, the minimax regret of these problems is known to be strictly worse than the minimax regret in the corresponding full information setting. We introduce the multi-point bandit setting, in which the player can query each loss function at multiple points. When the player is allowed to query each function at two points, we prove regret bounds that closely resemble bounds for the full information case. This suggests that knowing the value of each loss function at two points is almost as useful as knowing the value of each function everywhere. When the player is allowed to query each function at *d+1* points (*d* being the dimension of the space), we prove regret bounds that are exactly equivalent to full information bounds for smooth functions.

Publication type | Inproceedings |

Published in | Proceedings of the 23rd Annual Conference on Learning Theory (COLT) |

- Fastest Mixing Markov Chain on Graphs with Symmetries
- From Online to Batch Learning with Cutoff Averaging
- Individual Sequence Prediction using Memory-Efficient Context Trees

> Publications > Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit Feedback