High Performance Discrete Fourier Transforms on Graphics Processors

We present novel algorithms for computing discrete Fourier transforms with high performance on GPUs. We present hierarchical, mixed radix FFT algorithms for both power-of-two and non-power-of-two sizes. Our hierarchical FFT algorithms efficiently exploit shared memory on GPUs using a Stockham formulation. We reduce the memory transpose overheads in hierarchical algorithms by combining the transposes into a block-based multi-FFT algorithm. For non-power-of-two sizes, we use a combination of mixed radix FFTs of small primes and Bluestein’s algorithm. We use modular arithmetic in Bluestein’s algorithm to improve the accuracy. We implemented our algorithms using the NVIDIA CUDA API and compared their performance with NVIDIA’s CUFFT library and an optimized CPU-implementation (Intel’s MKL) on a high-end quad-core CPU. On an NVIDIA GPU, we obtained performance of up to 300 GFlops, with typical performance improvements of 2–4x over CUFFT and 8–40x improvement over MKL for large sizes.

PDF file

In  Proceedings of the 2008 ACM/IEEE conference on Supercomputing

Publisher  IEEE
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. http://www.ieee.org/


> Publications > High Performance Discrete Fourier Transforms on Graphics Processors