Inferring Search Behaviors Using Partially Observable Markov (POM) Model

This article describes an application of the partially observable Markov (POM) model to the analysis of a large scale commercial web search log. Mathematically, POM is a variant of the hidden Markov model in which all the hidden state transitions do not necessarily emit observable events. This property of POM is used to model, as the hidden process, a common search behavior that users would read and skip search results, leaving no observable user actions to record in the search logs. The Markov nature of the model further lends support to cope with the facts that a single observed sequence can be probabilistically associated with many hidden sequences that have variable lengths, and the search results can be read in various temporal orders that are not necessarily reflected in the observed sequence of user actions. To tackle the implementation challenges accompanying the flexibility and ana-lytic powers of POM, we introduce segmental Viterbi algorithm based on segmental decoding and Viterbi training to train the POM model parameters and apply them to uncover hidden processes from the search logs. To validate the model, the latent variables modeling the browsing patterns on the search result page are compared with the experimental data of the eye tracking stu-dies. The close agreements suggest that the search logs do contain rich information of user behaviors in browsing the search result page even though they are not directly observable, and that using POM to understand these sophisticated search behaviors is a promising approach.

PDF file

In  Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM’2010), New York, NY

Publisher  Association for Computing Machinery, Inc.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or The definitive version of this paper can be found at ACM’s Digital Library --


> Publications > Inferring Search Behaviors Using Partially Observable Markov (POM) Model