Reducing the risk of query expansion via robust constrained optimization

Kevyn Collins-Thompson

Abstract

We introduce a new theoretical derivation, evaluation methods, and extensive empirical analysis for an automatic query expansion framework in which model estimation is cast as a robust constrained optimization problem. This framework provides a powerful method for modeling and solving complex expansion problems, by allowing multiple sources of domain knowledge or evidence to be encoded as simultaneous optimization constraints. Our robust optimization approach provides a clean theoretical way to model not only expansion benefit, but also expansion risk, by optimizing over uncertainty sets for the data. In addition, we introduce risk-reward curves to visualize expansion algorithm performance and analyze parameter sensitivity. We show that a robust approach significantly reduces the number and magnitude of expansion failures for a strong baseline algorithm, with no loss in average gain. Our approach is implemented as a highly efficient post-processing step that assumes little about the baseline expansion method used as input, making it easy to apply to existing expansion methods. We provide analysis showing that this approach is a natural and effective way to do selective expansion, automatically reducing or avoiding expansion in risky scenarios, and successfully attenuating noise in poor baseline methods.

Details

Publication typeInproceedings
Published inProceedings of CIKM 2009
PublisherAssociation for Computing Machinery, Inc.
> Publications > Reducing the risk of query expansion via robust constrained optimization