MINT: A Method for Effective and Scalable Mining of Named Entity Transliterations from Large Comparable Corpora

Raghavendra Udupa, K Saravanan, A Kumaran, and Jagadeesh Jagarlamudi

Abstract

In this paper, we address the problem of mining transliterations of Named Entities (NEs) from large comparable corpora. We leverage the empirical fact that multilingual news articles with similar news content are rich in Named Entity Transliteration Equivalents (NETEs). Our mining algorithm, MINT, uses a cross-language document similarity model to align multilingual news articles and then mines NETEs from the aligned articles using a transliteration similarity model. We show that our approach is highly effective on 6 different comparable corpora between English and 4 languages from 3 different language families. Furthermore, it performs substantially better than a state-of-the-art competitor.

Details

Publication typeInproceedings
Published in12th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2009), Athens, Greece
URLhttp://www.aclweb.org/anthology-new/E/E09/E09-1091.pdf
PublisherAssociation for Computational Linguistics
> Publications > MINT: A Method for Effective and Scalable Mining of Named Entity Transliterations from Large Comparable Corpora