MINT: A Method for Effective and Scalable Mining of Named Entity Transliterations from Large Comparable Corpora

In this paper, we address the problem of mining transliterations of Named Entities (NEs) from large comparable corpora. We leverage the empirical fact that multilingual news articles with similar news content are rich in Named Entity Transliteration Equivalents (NETEs). Our mining algorithm, MINT, uses a cross-language document similarity model to align multilingual news articles and then mines NETEs from the aligned articles using a transliteration similarity model. We show that our approach is highly effective on 6 different comparable corpora between English and 4 languages from 3 different language families. Furthermore, it performs substantially better than a state-of-the-art competitor.

E09-1091.pdf
PDF file

In  Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009)

Publisher  Association for Computational Linguistics
All copyrights reserved by ACL 2007

Details

TypeInproceedings
Pages799-807
> Publications > MINT: A Method for Effective and Scalable Mining of Named Entity Transliterations from Large Comparable Corpora