Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
PQC: Personalized Query Classification

Bin Cao, Jian-Tao Sun, Evan Wei Xiang, Derek Hao Hu, Qiang Yang, and Zheng Chen


With the help of search engines, Web queries are becoming a major bridge between Web users and online services provided by search engines such as advertisement and Web page search. Query classification (QC) is a task that aims to classify Web queries into topical categories. Since queries are usually short in length and ambiguous, the same query may need to be classified to different categories according to different people's perspective. In this paper, we propose Personalized Query Classification (PQC) task and develop an algorithm based on user preferences learning. Users' preferences that are hidden in clickthrough logs are quite helpful for search engines to improve on their understanding of users' queries. We propose to connect query classification with preferences learning from clickthrough log for PQC. To tackle the sparseness problem in user preferences learning, we also propose a collaborative ranking model to leverage similar users' information. Experiments on a real world clickthrough log show that our proposed PQC algorithm can gain significant improvement compared with general QC. Our method can be applied to a wide range of applications including personalized search and online advertising.


Publication typeInproceedings
Published inThe 18th ACM Conference on Information and Knowledge Management (CIKM 2009)
PublisherAssociation for Computing Machinery, Inc.
> Publications > PQC: Personalized Query Classification