A Novel Framework and Training Algorithm for Variable-Parameter Hidden Markov Models

We propose a new framework and the associated maximum-likelihood and discriminative training algorithms for the variable-parameter hidden Markov model (VPHMM) whose mean and variance parameters vary as functions of additional environment-dependent conditioning parameters. Our framework differs from the VPHMM proposed by Cui and Gong (2007) in that piecewise spline interpolation instead of global polynomial regression is used to represent the dependency of the HMM parameters on the conditioning parameters, and a more effective functional form is used to model the variances. Our framework unifies and extends the conventional discrete VPHMM. It no longer requires quantization in estimating the model parameters and can support both parameter sharing and instantaneous conditioning parameters naturally. We investigate the strengths and weaknesses of the model on the Aurora-3 corpus. We show that under the well-matched condition the proposed discriminatively trained VPHMM outperforms the conventional HMM trained in the same way with relative word error rate (WER) reduction of 19% and 15%, respectively, when only mean is updated and when both mean and variances are updated.

Index Terms—Discriminative training, growth transformation, parameter clustering, speech recognition, spline interpolation, variable-parameter hidden Markov model (VPHMM).

VPHMM-TSAL-Published.pdf
PDF file

In  IEEE Transactions on Audio, Speech and Language Processing

Publisher  IEEE
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. http://www.ieee.org/

Details

TypeArticle
Pages1348-1360
Volume17
Number7
> Publications > A Novel Framework and Training Algorithm for Variable-Parameter Hidden Markov Models