Learning from Multi-topic Web Documents for Contextual Advertisement

Contextual advertising on web pages has become very popular recently and it poses its own set of unique text mining challenges. Often advertisers wish to either target (or avoid) some specific content on web pages which may appear only in a small part of the page. Learning for these targeting tasks is difficult since most training pages are multi-topic and need expensive human labeling at the sub-document level for accurate training. In this paper we investigate ways to learn for sub-document classification when only page level labels are available - these labels only indicate if the relevant content exists in the given page or not. We propose the application of multiple-instance learning to this task to improve the effectiveness of traditional methods. We apply sub-document classification to two different problems in contextual advertising. One is “sensitive content detection” where the advertiser wants to avoid content relating to war, violence, pornography, etc. even if they occur only in a small part of a page. The second problem involves opinion mining from review sites - the advertiser wants to detect and avoid negative opinion about their product when positive, negative and neutral sentiments co-exist on a page. In both these scenarios we present experimental results to show that our proposed system is able to get good block level labeling for free and improve the performance of traditional learning methods.

PDF file

In  Proc. 14th International Conference on Knowledge Discovery and Data Mining

Publisher  Association for Computing Machinery, Inc.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM’s Digital Library --http://www.acm.org/dl/.


> Publications > Learning from Multi-topic Web Documents for Contextual Advertisement