Entity Categorization over Large Document Collections

Extracting entities (such as people, movies) from documents and identifying the categories (such as painter, writer) they belong to enable structured querying and data analysis over unstructured document collections. In this paper, we focus on the problem of categorizing extracted entities. Most prior approaches developed for this task only analyzed the local document context within which entities occur. In this paper, we significantly improve the accuracy of entity categorization by (i) considering an entity’s context across multiple documents containing it, and (ii) exploiting existing large lists of related entities (e.g., lists of actors, directors, books). These approaches introduce computational challenges ecause (a) the context of entities has to be aggregated across several documents and (b) the lists of related entities may be very large. We develop techniques to address these challenges. We present a thorough experimental study on real data sets that demonstrates the increase in accuracy and the scalability of our approaches.

rtp404-konig.pdf
PDF file

In  14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD 2008)

Publisher  Association for Computing Machinery, Inc.
Copyright © 2008 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM’s Digital Library --http://www.acm.org/dl/.

Details

TypeInproceedings
> Publications > Entity Categorization over Large Document Collections