Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Fast Embedding of Sparse Music Similarity Graphs

John C. Platt


This paper applies fast sparse multidimensional scaling (MDS) to a large graph of music similarity, with 267K vertices that represent artists, albums, and tracks; and 3.22M edges that represent similarity between those entities. Once vertices are assigned locations in a Euclidean space, the locations can be used to browse music and to generate playlists. MDS on very large sparse graphs can be effectively performed by a family of algorithms called Rectangular Dijsktra (RD) MDS algorithms. These RD algorithms operate on a dense rectangular slice of the distance matrix, created by calling Dijsktra a constant number of times. Two RD algorithms are compared: Landmark MDS, which uses the Nyström approximation to perform MDS; and a new algorithm called Fast Sparse Embedding, which uses FastMap. These algorithms compare favorably to Laplacian Eigenmaps, both in terms of speed and embedding quality.


Publication typeInproceedings
> Publications > Fast Embedding of Sparse Music Similarity Graphs