An Experimental Study on Large-Scale Web Categorization

Taxonomies of the Web typically have hundreds of thousands of categories and skewed category distribution over documents. It is not clear whether existing text classification technologies can perform well on and scale up to such large-scale applications. To understand this, we conducted the evaluation of several representative methods (Support Vector Machines, k-Nearest Neighbor and Naive Bayes) with Yahoo! taxonomies. In particular, we evaluated the effectiveness/efficiency tradeoff in classifiers with hierarchical setting compared to conventional (flat) setting, and tested popular threshold tuning strategies for their scalability and accuracy in large-scale classification problems.

PDF file

In  Special interest tracks and posters of the 14th international conference on World Wide Web

Publisher  Association for Computing Machinery, Inc.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or The definitive version of this paper can be found at ACM’s Digital Library --


> Publications > An Experimental Study on Large-Scale Web Categorization