Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Collaborative Location and Activity Recommendations With GPS History Data

Vincent Wenchen Zheng, Yu Zheng, Xing Xie, and Qiang Yang

Abstract

With the increasing popularity of location-based services, such as tour guide and location-based social network, we now have accumulated many location data on the Web. In this paper, we show that, by using the location data based on GPS and users’ comments at various locations, we can discover interesting locations and possible activities that can be performed there for recommendations. Our research is highlighted in the following location-related queries in our daily life: 1) if we want to do something such as sightseeing or food-hunting in a large city such as Beijing, where should we go? 2) If we have already visited some places such as the Bird’s Nest building in Beijing’s Olympic park, what else can we do there? By using our system, for the first question, we can recommend her to visit a list of interesting locations such as Tiananmen Square, Bird’s Nest, etc. For the second question, if the user visits Bird’s Nest, we can recommend her to not only do sightseeing but also to experience its outdoor exercise facilities or try some nice food nearby. To achieve this goal, we first model the users’ location and activity histories that we take as input. We then mine knowledge, such as the location features and activity-activity correlations from the geographical databases and the Web, to gather additional inputs. Finally, we apply a collective matrix factorization method to mine interesting locations and activities, and use them to recommend to the users where they can visit if they want to perform some specific activities and what they can do if they visit some specific places. We empirically evaluated our system using a large GPS dataset collected by 162 users over a period of 2.5 years in the real-world. We extensively evaluated our system and showed that our system can outperform several state-of-the-art baselines.

Details

Publication typeInproceedings
Published inWWW 2010
PublisherAssociation for Computing Machinery, Inc.
> Publications > Collaborative Location and Activity Recommendations With GPS History Data