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Abstract
Writing concurrent programs is notoriously difficult, and is of in-
creasing practical importance. A particular source of concern is
that even correctly-implemented concurrency abstractions cannot
be composed together to form larger abstractions. In this paper we
present a new concurrency model, based on transactional memory,
that offers far richer composition. All the usual benefits of trans-
actional memory are present (e.g. freedom from deadlock), but in
addition we describe new modular forms of blocking and choice
that have been inaccessible in earlier work.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming – Parallel programming; D.4.1
[Operating Systems]: Process Management – Concurrency; Syn-
chronization; Threads

General Terms Algorithms, Languages

Keywords Non-blocking algorithms, locks, transactional memory

1. Introduction
Concurrent programming is notoriously tricky. Current lock-based
abstractions are difficult to use and make it hard to design computer
systems that are reliable and scalable. Furthermore, systems built
using locks are difficult to compose without knowing about their
internals.

To address some of these difficulties, several researchers (in-
cluding ourselves) have proposed software transactional memory
(STM), which can perform groups of memory operations atomi-
cally [27]. Using transactional memory (implemented by optimistic
synchronisation) instead of locks brings well-known advantages:
freedom from deadlock and priority inversion, automatic roll-back
on exceptions or timeouts, and freedom from the tension between
lock granularity and concurrency.

Although promising, our previous work on transactional mem-
ory suffered a number of shortcomings: it could not statically pre-
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vent threads from bypassing transactional interfaces and it did not
provide a convincing story for operations that may block. In this
paper we resolve these shortcomings. In particular, we make the
following contributions:

• We re-express the ideas of transactional memory in the setting
of Concurrent Haskell (Section 3). This is much more than a
routine “port” into a new setting. As we show, STM can be ex-
pressed particularly elegantly in a declarative language, and we
are able to use Haskell’s type system to give far stronger guaran-
tees than are conventionally possible. Furthermore transactions
are compositional: small transactions can be glued together to
form larger transactions.

• We present a new, modular form of blocking, which appears
to the programmer as a simple function called retry (Sec-
tion 3.2). Unlike most existing approaches, the programmer
does not have to identify the condition under which the transac-
tion can run to completion: retry can occur anywhere within
the transaction, blocking it until an alternative execution path
becomes possible.

• The retry function allows possibly-blocking transactions to be
composed in sequence. Beyond this, we also provide orElse,
which allows them to be composed as alternatives, so that
the second is run if the first retries (Section 3.4). This abil-
ity allows threads to wait for many things at once, like the
Unix select system call – except that orElse composes well,
whereas select does not. It turns out that orElse requires
the underlying STM implementation to support genuine nested
transactions, the first STM to do so (Section 6.4).

• Unusually for a practical programming language, we provide
a formal operational semantics of our system in Section 5.
This semantics clarifies the behaviour in cases which have a
less intuitive meaning, such as what happens if an exception is
raised mid-way through a memory transaction.

• We have implemented our design in the Glasgow Haskell
Compiler, a fully-fledged optimising compiler for Concurrent
Haskell. The changes are localised, rather than pervasive, and
we describe the details in Section 6.

Taken together, these ideas offer a qualitative improvement in lan-
guage support for modular concurrency, similar to the improvement
in moving from assembly code to a high-level language. Our main
war-cry is compositionality: a programmer can control atomicity
and blocking behaviour in a modular way that respects abstraction
barriers. In contrast, current lock-based approaches lead to a direct
conflict between abstraction and concurrency (Section 2).

2. Background
Throughout this paper we study internal concurrencybetween the
threads interacting through memory in a single process; we do not
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consider here the questions of external interaction through storage
systems or databases, nor do we address distributed systems.

Even in this setting, concurrent programming is extremely dif-
ficult. The dominant programming technique is based on locks, an
approach that is simple and direct, but that simply does not scale
with program size and complexity. To ensure correctness, program-
mers must identify which operations conflict; to ensure liveness,
they must avoid introducing deadlock; to ensure good performance,
they must balance the granularity at which locking is performed
against the costs of fine-grain locking. Perhaps the most fundamen-
tal objection, though, is that lock-based programs do not compose:
correct fragments may fail when combined.

For example, consider a hash table with thread-safe insert and
delete operations. Now suppose that we want to delete one item A
from table t1, and insert it into table t2; but the intermediate state
(in which neither table contains the item) must not be visible to
other threads. Unless the implementor of the hash table anticipates
this need, there is simply no way to satisfy this requirement. Even if
she does, all she can do is expose methods such as LockTable and
UnlockTable – but as well as breaking the hash-table abstraction,
they invite lock-induced deadlock, depending on the order in which
the client takes the locks, or race conditions if the client forgets.
Yet more complexity is required if the client wants to await the
presence of A in t1, but this blocking behaviour must not lock
the table (else A cannot be inserted). In short, operations that are
individually correct (insert, delete) cannot be composed into larger
correct operations.

The same phenomenon shows up trying to compose alternative
blocking operations. Suppose a procedure p1 waits for one of two
input pipes to have data, using an internal call to the Unix select
procedure; and suppose another procedure p2 does the same thing,
on two different pipes. In Unix there is no way to perform a select
between p1 and p2, a fundamental loss of compositionality. In-
stead, Unix programmers learn awkward programming techniques
to gather up all the file descriptors that must be waited for, perform
a single top-level select, and then dispatch back to the correct
handler. Again, two individually-correct abstractions, p1 and p2,
cannot be composed into a larger one; instead, they must be ripped
apart and awkwardly merged, in direct conflict with the goals of
abstraction.

Rather than fixing locks, a more promising and radical alterna-
tive is to base concurrency control on atomic memory transactions,
also known as transactional memory. We will show that transac-
tional memory offers a solution to the tension between concurrency
and abstraction. For example, with memory transactions we can
manipulate the hash table thus:

atomic { v:=delete(t1,A); insert(t2,A,v) }

and to wait for either p1 or p2 we can say

atomic { p1 ‘orElse‘ p2 }

These simple constructions require no knowledge of the implemen-
tation of insert, delete, p1, or p2, and they continue to work
correctly if these operations may block, as we shall see.

2.1 Transactional memory

The idea of transactions is not new: they have been a fundamental
mechanism in database design for many years, and there has been
much recent work on transactional memories [11, 10, 9, 6, 31].

The key idea is that a block of code, including nested calls, can
be enclosed by an atomic block, with the guarantee that it runs
atomically with respect to every other atomic block. Transactional
memory can be implemented using optimistic synchronisation. In-
stead of taking locks, an atomic block runs without locking, accu-
mulating a thread-local transaction logthat records every memory
read and write it makes. When the block completes, it first validates

its log, to check that it has seen a consistent view of memory, and
then commitsits changes to memory. If validation fails, because
memory read by the method was altered by another thread during
the block’s execution, then the block is re-executed from scratch.

Transactional memory eliminates, by construction, many of
the low-level difficulties that plague lock-based programming [6].
There are no lock-induced deadlocks (because there are no locks);
there is no priority inversion; and there is no painful tension be-
tween granularity and concurrency. However little progress has
been made on building transactional abstractions that compose
well. We identify three particular problems.

Firstly, since a transaction may be re-run automatically, it is
essential that it do nothing irrevocable. For example the transaction

atomic { if (n>k) then launch_missiles(); S2 }

might launch a second salvo of missiles if it were re-executed.
It might also launch the missiles inadvertently if, say, the thread
was de-scheduled after reading n but before reading k, and another
thread modified both before the thread was resumed. This problem
begs for a guarantee that the body of the atomic block can only
perform memory operations, and hence can only make benign
modifications to its own transaction log, rather than performing
irrevocable input/output.

Secondly, blocking is not composable. Many systems do not
support synchronisation at all without using condition variables,
and those that do rely on a a programmer-supplied boolean guard
on the atomic block [9]. For example, a method to get an item
from a buffer might be:

Item get() {
atomic (n_items > 0) {...remove item...}

}

The thread waits until the guard (n_items > 0) holds, before ex-
ecuting the block. But how could we take two consecutiveitems?
We cannot call get(); get(), because another thread might per-
form an intervening get. We could try wrapping two calls to get
in a nested atomic block, but the semantics of this are unclear un-
less the outer block checks there are two items in the buffer. This
is a disaster for abstraction, because the client (who wants to get
the two items) has to know about the internal details of the imple-
mentation. If several separate abstractions are involved, matters are
even worse.

Thirdly, no previous transactional memory supports choice, ex-
emplified by the select example mentioned earlier (but see Sec-
tion 7.2 on Concurrent ML, which does). We tackle all three issues
by presenting transactional memory in the context of the declara-
tive language Concurrent Haskell, which we briefly review next.

2.2 Concurrent Haskell

Concurrent Haskell [22] is an extension to Haskell 98, a pure,
lazy, functional language. It provides explicitly-forked threads, and
abstractions for communicating between them. This naturally in-
volves side effects and so, given the lazy evaluation strategy, it is
necessary to be able to control exactly when they occur. The big
breakthrough came from a mechanism called monads[23].

Here is the key idea: a value of type IO a is an I/O action that,
when performed, may do some I/O before yielding a value of type
a. For example, the functions putChar and getChar have types:

putChar :: Char -> IO ()
getChar :: IO Char

That is, putChar takes a Char and delivers an I/O action that,
when performed, prints the character on the standard output; while
getChar is an action that, when performed, reads a character from
the console and delivers it as the result of the action. A complete
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-- The STM monad itself
data STM a
instance Monad STM
-- Monads support "do" notation and sequencing

-- Exceptions
throw :: Exception -> STM a
catch :: STM a -> (Exception->STM a) -> STM a

-- Running STM computations
atomic :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

-- Transactional variables
data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Figure 1: The STM interface

program must define an I/O action called main; executing the
program means performing that action. For example:

main :: IO ()
main = putChar ’x’

I/O actions can be glued together by a monadic bindcombinator.
This is normally used through some syntactic sugar, allowing a C-
like syntax. Here, for example, is a complete program that reads a
character and then prints it twice:

main = do { c <- getChar; putChar c; putChar c }

As well as performing external input/output, I/O actions include
operations with side effects on mutable cells. A value of type
IORef a is a mutable storage cell which can hold values of type
a, and is manipulated (only) through the following interface:

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

newIORef takes a value of type a and creates a mutable storage lo-
cation holding that value. readIORef takes a reference to such a lo-
cation and returns the value that it contains. writeIORef provides
the corresponding update operation. Since these cells can only be
created, read, and written using operations in the IO monad, there
is a type-secure guarantee that ordinary functions are unaffected
by state – e.g. a pure function sin cannot read or write an IORef
because sin has type Float -> Float.

Concurrent Haskell supports threads, each independently per-
forming input/output. Threads are created using a function forkIO.

forkIO :: IO a -> IO ThreadId

forkIO takes an I/O action as its argument, spawns a fresh thread
to perform that action, and immediately returns its thread identifier
to the caller. For example, here is a program that forks a thread that
prints ‘x’, while the main thread goes on to print ‘y’:

main = do { forkIO (print ’x’); print ’y’ }

A fuller introduction to concurrency, I/O, exceptions and cross-
language interfacing (the “awkward squad” for pure, lazy, func-
tional programming) is given in [21]. Several general on-line tuto-
rials on Haskell are also available, for instance [3].

3. Composable transactions
We are now ready to present the key ideas of the paper. Our
starting point is this: a purely-declarative language is a perfect

setting for transactional memory, for two reasons. First, the type
system explicitly separates computations which may have side-
effects from effect-free ones. As we shall see, it is easy to refine it
so that transactions can perform memory effects but not irrevocable
input/output effects. Second, reads from and writes to mutable cells
are explicit, and relatively rare: most computation takes place in the
purely functional world. These functional computations perform
many, many memory operations — allocation, update of thunks,
stack operations, and so on — but none of these need to be tracked
by the STM, because they are pure, and never need to be rolled
back. Only the relatively-rare explicit operations need be logged,
so a software implementation is entirely appropriate.

So our approach is to use Haskell as a kind of “laboratory” in
which to study the ideas of transactional memory in a setting with a
very expressive type system. As we shall see, we are able to define
a much more compositional form of transactional memory than has
been possible hitherto. As we go, we will mention primitives from
the STM library, whose interface is summarised in Figure 1, and
whose semantics we will describe more thoroughly in Section 5.

3.1 Transactional variables and atomicity

Suppose we wish to implement a resource manager, which holds
an integer-valued resource. The call getR r n should acquire n
units of resource r, blocking if r holds insufficient resource; the
call putR r n should return n units of resource to r.

Here is how we might program putR in STM Haskell:

type Resource = TVar Int
putR :: Resource -> Int -> STM ()
putR r i = do { v <- readTVar r

; writeTVar r (v+i) }

The currently-available resource is held in a transactional variable
of type TVar Int. The type declaration simply gives a name to
this type. The function putR reads the value v of the resource from
its cell, and writes back (v+i) into the same cell. (We discuss getR
next, in Section 3.2.)

The readTVar and writeTVar operations both return STM
actions (Figure 1), but Haskell allows us to use the same do {...}
syntax to compose STM actions as we did for I/O actions. These
STM actions remain tentative during their execution: in order to
expose an STM action to the rest of the system, it can be passed to
a new function atomic, with type

atomic :: STM a -> IO a

It takes a memory transaction, of type STM a, and delivers an I/O
action that, when performed, runs the transaction atomically with
respect to all other memory transactions. One might say:

main = do { ...; atomic (putR r 3); ... }

The atomic function and all of the STM-typed operations are built
over the transactional memory described in Section 6. This deals
with maintaining a per-thread transaction log to record the tentative
accesses made to TVars. When atomic is invoked the STM checks
that the logged accesses are valid – i.e. no concurrent transaction
has committed conflicting updates. If the log is valid then the STM
commitsit atomically to the heap, thereby exposing its effects to
other transactions. Otherwise the memory transaction is re-run with
a fresh log.

Splitting the world into STM actions and I/O actions provides
two valuable guarantees:

• Only STM actions and pure computation can be performed in-
side a memory transaction; in particular I/O actions cannot.
This is precisely the guarantee we sought in Section 2.1. It stat-
ically prevents the programmer from calling launchMissiles
inside a transaction, because launching missiles is an I/O action
with type IO (), and cannot be composed with STM actions.
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• No STM actions can be performed outside a transaction, so
the programmer cannot accidentally read or write a TVar with-
out the protection of atomic. Of course, one can always say
atomic (readTVar v) to read a TVar in a trivial transaction,
but the call to atomic cannot be omitted.

3.2 Blocking memory transactions

Any concurrency mechanism must provide a way for a thread to
await an event or events caused by other threads. In lock-based
programming, this is typically done using condition variables; mes-
sage based systems offer a construct to wait for messages on a
number of channels; POSIX provides select; Win32 provides
WaitForMultipleObjects; and STM systems to date allow the
programmer to guard the atomic block with a boolean condition
(see Section 2.1). None of these mechanisms are composable.

The Haskell setting led us to a remarkably simple and compos-
able mechanism for blocking: a single STM action retry. Here is
the code for getR:

getR :: Resource -> Int -> STM ()
getR r i = do { v <- readTVar r

; if (v < i) then retry
else writeTVar r (v-i) }

It reads the value v of the resource and, if v >= i, decreases it by
i. But if not, so there is insufficient resource in the variable, it calls
retry. Conceptually, retry aborts the transaction with no effect,
and restarts it at the beginning. However, there is no point in ac-
tually re-executing the transaction until at least one of theTVars
read during the attempted transaction is written by another thread.
Furthermore, the transaction log (which is needed anyway) already
records exactly which TVars were read. The implementation there-
fore blocks the thread until at least one of these is updated. Notice
that retry’s type (STM a) allows it to be used wherever an STM
action may occur.

Unlike the validation check, which is automatic and implicit,
retry is called explicitly by the programmer. It does not indicate
anything bad or unexpected; rather, it shows up when some kind of
blocking would take place in other approaches to concurrency.

Notice that there is no need for the putR operation to remember
to signal any condition variables. Simply by writing to the TVars
involved, the producer will wake up the consumer. A whole class
of lost-wake-up bugs is eliminated thereby.

From an efficiency point of view, it makes sense to call retry
as early as possible, and to refrain from reading unrelated locations
until after the test succeeds. Nevertheless, the programming inter-
face is delightfully simple, and easy to reason about.

3.3 Sequential composition

By using atomic, the programmer identifies atomic transactions,
in the classic sense that the entire set of operations that it contains
appears to take place indivisibly. This is the key to sequential
composition for concurrency abstractions. For example, to grab
three units of one resource and seven of another, a thread can say

atomic (do { getR r1 3; getR r2 7 })

The standard do { .. ; .. } notation combines the STM ac-
tions from the two getR calls and the underlying transactional
memory commits their updates as a single atomic I/O action.

The retry function is central to making transactions compos-
able when they may block. The transaction above will block if ei-
ther r1 or r2 has insufficient resource: there is no need for the caller
to know how getR is implemented, or what condition guarantees
its success. Nor is there any risk of deadlock by awaiting r2 while
holding r1.

This ability to compose STM actions is why we did not define
getR as an I/O action, wrapped in a call to atomic. By leaving it

as an STM action, we allow the programmer to compose it with
other STM actions before finally sealing it into a transaction with
atomic. In a lock-based setting, one would worry about crucial
locks being released between the two calls, and about deadlock
if another thread grabbed the resources in the opposite order, but
there are no such concerns here. Any STM action can be robustly
composed with other STM actions.

3.4 Composing alternatives

We have discussed composing transactions in sequence, so that
both are executed. STM Haskell also lets us to compose transac-
tions as alternatives, so that only one is executed. For example, to
get either3 units from r1 or 7 units from r2:

atomic (getR r1 3 ‘orElse‘ getR r2 7)

The orElse function is provided by the STM module (Figure 1);
here, it is written infix, by enclosing it in backquotes, but it is a
perfectly ordinary function of two arguments.

The transaction s1 ‘orElse‘ s2 first runs s1; if it retries, then
s1 is abandoned with no effect, and s2 is run. If s2 retries as well,
the entire call retries — but it waits on the variables read by either
of the two nested transactions. Again, the programmer need know
nothing about the enabling condition of s1 and s2.

Using orElse provides an elegant way for library implementors
to defer to their caller the question of whether or not to block.
For instance it is straightforward to convert the blocking version
of getR into one which returns a boolean success or failure result:

nonBlockGetR :: Resource -> Int -> STM Bool
nonBlockGetR r i = do { getR r i ; return True }

‘orElse‘ return False

Notice that this idiom depends on the left-biased nature of orElse.
The same kind of construction can be also used to build a blocking
operation from one that returns a boolean result: simply invoke
retry on receiving a False result:

blockGetR :: Resource -> Int -> STM ()
blockGetR r i =

do { s <- nonBlockGetR r i;
if s then return () else retry }

The orElse function obeys useful laws: it is associative, and has
unit retry:

M1 ‘orElse‘ (M2 ‘orElse‘ M3)
= (M1 ‘orElse‘ M2) ‘orElse‘ M3

retry ‘orElse‘ M = M
M ‘orElse‘ retry = M

Haskell aficionados will recognise that STM may thus be an in-
stance of MonadPlus.

3.5 Exceptions

The STM monad supports exceptions just like the IO monad, and
in much the same way as (say) C#. Two new primitive functions,
catch and throw, are required; their types are given in Figure 1.
(As with atomic, no new language constructs are needed.) The
question is: how should transactions and exceptions interact. For
example, what should this transaction do?

atomic (do {
{ n <- readTVar v_n
; lim <- readTVar v_lim
; writeTVar v_n (n+1)
; if n > lim then throw (AssertionFailed "Urk")
else if (n == lim) then retry
else return ()

; ...write data into buffer... }
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The programmer throws an exception if n>lim, in which case the
..write data.. part will clearly not take place. But what about
the write to v_n from before the exception was thrown?

Concurrent Haskell encourages programmers to use exceptions
for signalling error conditions, rather than for normal control flow.
Built-in exceptions, such as divide-by-zero, also fall into this cate-
gory. For consistency, then, in the above program we do not want
the programmer to have to take account of the possibility of ex-
ceptions, when reasoning that if v_n is (observably) written then
data is written into the buffer. We therefore specify that exceptions
have abort semantics: if an atomic transaction throws an exception,
the transaction is aborted with no effect. If the programmer wants
to commit the effects up to the point at which the exception was
thrown, he can easily catch the exception inside the transaction, and
return normally — the transaction is only aborted if the exception
propagates to the end of the atomic block.

Our use of exceptions to abort atomic blocks is a free design
choice. In other languages, especially in ones where exceptions are
used more frequently, it might be appropriate to distinguish be-
tween exceptions that cause the enclosing atomic block to abort
from exceptions that allow it to commit before they are propagated.
Shinnar et al. show how abort semantics are valuable when han-
dling exceptions even in single-threaded applications [28].

Notice the difference between calling throw and calling retry.
The former signals an error, and aborts the transaction; the latter
only indicates that the transaction is not yet ready to run, and causes
it to block until the situation changes.

An exception can carry a value out of the STM world. For
example, consider

atomic (do
{ s <- readTVar svar
; writeTVar svar "Wuggle"
; if length s < 10 then

throw (AssertionFailed s)
else ... }

Here, the external world gets to see the exception value holding
the string s that was read out of the TVar. On the other hand,
since the transaction is aborted, no writes to svar are externally
observable. One might argue that it is wrong to allow even reads to
“leak” from an aborted transaction, but we do not agree. The values
carried by an exception can only represent a consistent view of the
store (or validation would fail, and the transaction would retry), and
it is almost impossible to debug an error condition that only says
“something bad happened” while deliberately discarding all clues
to what the bad thing was. The basic transactional guarantees are
not threatened.

What if the exception carries a TVar allocated in the aborted
transaction? A dangling pointer would be unpleasant! To avoid
this we refine the semantics of exceptions to say that a transaction
that throws an exception is aborted so far as its write effects are
concerned, but its allocationeffects are retained; after all, they are
thread-local. As a result, the TVar is visible after the transaction,
in the state it had when it was allocated. Cases like these are tricky,
which is why we provide a full formal semantics in Section 5.

Concurrent Haskell also provides asynchronous exceptions
which can be thrown into a thread as a signal – typical examples
are error conditions like stack overflow, or when a master thread
wishes to shut down a helper. If a thread is in the midst of an
STM transaction, then the transaction log can be discarded without
externally-visible effects. By aborting the transaction we provide a
kill-safe mechanism for avoiding the kind of consistency problems
that Flatt and Findler describe [5].

4. Applications and examples
In this section we provide some examples of how composable
memory transactions can be used to build higher level concur-
rency abstractions. We focus on operations that involve potentially-
blocking communication between threads. Previous work has
shown, many times over, how standard shared-memory data struc-
tures can be developed from sequential code using transactional
memory operations (for instance [10, 9]).

4.1 MVars

Prior to our STM work, Concurrent Haskell provided MVars as its
primitive mechanism for allowing threads to communicate safely.
An MVar is a mutable location like a TVar, except that it may be
either empty, or full with a value. The takeMVar function leaves a
full MVar empty, and blocks on an empty MVar. A putMVar on an
empty MVar leaves it full, and blocks on a full MVar. So MVars are,
in effect, a one-place channel.

It is easy to implement MVars on top of TVars. An MVar holding
a value of type a can be represented by a TVar holding a value
of type Maybe a; this is a type that is either an empty value
(“Nothing”), or actually holds an a (e.g. “Just 42”).

type MVar a = TVar (Maybe a)
newEmptyMVar :: STM (MVar a)
newEmptyMVar = newTVar Nothing

The takeMVar operation reads the contents of the TVar and retries
until it sees a value other than Nothing:

takeMVar :: MVar a -> STM a
takeMVar mv

= do { v <- readTVar mv
; case v of

Nothing -> retry
Just val -> do { writeTVar mv Nothing

; return val } }

The corresponding putMVar operation retries until it sees Nothing,
at which point it updates the underlying TVar:

putMVar :: MVar a -> a -> STM ()
putMVar mv val

= do { v <- readTVar mv
; case v of

Nothing -> writeTVar mv (Just val)
Just val -> retry }

Notice how operations which return a boolean success / failure re-
sult can be built directly from these blocking designs. For instance:

tryPutMVar :: MVar a -> a -> STM Bool
tryPutMVar mv val

= do { putMVar mv val ; return True }
‘orElse‘ return False

4.2 Multicast channels

MVars effectively provide communication channels with a single
buffered item. In this section we show how to program buffered,
multi-item, multicast channels, in which items written to the chan-
nel (writeMChan in the interface below) are buffered internally and
received once by each read-port created from the channel. The full
interface is:

data MChan a
data Port a
newMChan :: STM (MChan a)
-- Write an item to the channel:
writeMChan :: MChan a -> a -> STM ()
-- Create a new read port:
newPort :: MChan a -> STM (Port a)
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-- Read the next buffered item:
readPort :: Port a -> STM a

We represent the buffered data by a linked list, or Chain, of items,
with a transactional variable in the tail, so that it can be extended
by writeMChan:

type Chain a = TVar (Item a)
data Item a = Empty | Full a (Chain a)

An MChan is represented by a mutable pointer to the “write” end of
the chain, while a Port points to the read end:

type MChan a = TVar (Chain a)
type Port a = TVar (Chain a)

With these definitions, the code writes itself:

newMChan = do { c <- newTVar Empty; newTVar c }
newPort mc = do { c <- readTVar mc; newTVar c }

readPort p
= do { c <- readTVar p

; i <- readTVar c
; case i of

Empty -> retry
Full v c’ -> do { writeTVar p c’;

return v } }
writeMChan mc v
= do { c <- readTVar mc

; c’ <- newTVar Empty
; writeTVar c (Full v c’)
; writeTVar mc c’ }

Notice the use of retry to block readPort when the buffer is
empty. Although this implementation is very simple, it ensures
that each item written into the MChan is delivered to every Port;
it allows multiple writers (their writes are interleaved); it allows
multiple readers on each port (data read by one is not seen by
the other readers on that port); and when a port is discarded, the
garbage collector recovers the buffered data.

More complicated variants are simple to program. For example,
suppose we wanted to ensure that the writer could get no more than
N items ahead of the most advanced reader. One way to do this
would be for the writer to include a serially-increasing Int in each
Item, and have a shared TVar holding the maximum serial number
read so far by any reader. It is simple for the readers to keep this up
to date, and for the writer to consult it before adding another item.

4.3 Merge

We have already stressed that transactions are composable. For
example, to read from either of two different multicast channels
we can say:

atomic (readPort p1 ‘orElse‘ readPort p2)

No changes need to be made to either multicast channel. If neither
port has any data, the STM machinery will cause the thread to wait
simultaneously on the TVars at the extremity of each channel.

Equally, the programmer can wait on a condition which involves
a mixture of MVars and channels (perhaps the multicast channel
indicates ordinary data and an MVar is being used to signal a
termination request), for instance:

atomic (readPort p1 ‘orElse‘ takeMVar m1)

This example is contrived for brevity, but it shows how operations
taken from different libraries, implemented without anticipation of
them being used together, can be composed. In the most general
case we can select between values received from a number of
different sources. Given a list of computations of type STM a we
can take the first value to be produced from any of them by defining
a merge operator:

x, y ∈ Variable
r, t ∈ Name

c ∈ Char

Value V ::= r | c | \x ->M
| return M | M >>=N
| putChar c | getChar
| throw M | catch M N
| retry | M ‘orElse‘ N
| forkIO M | atomic M
| newTVar
| readTVar r | writeTVar r M

Term M, N ::= x | V | M N | · · ·
Figure 2: The syntax of values and terms

merge :: [STM a] -> STM a
merge = foldr1 orElse

This example is childishly simple in STM Haskell. In contrast, a
function of type

mergeIO :: [IO a] -> IO a

is un-implementable in Concurrent Haskell, or indeed in other
settings with operations built from mutual exclusion locks and
condition variables.

4.4 Summary

Our main claim is that transactional memory qualitatively raises
the level of abstraction offered to programmers. Just as high-level
languages free programmers from worrying about register alloca-
tion, so transactional memory frees the programmer from concerns
about locks and lock acquisition order. More fundamentally, one
can combine abstractions without knowing their implementations,
a property that is the key to constructing large programs.

Like high-level languages, transactional memory does not ban-
ish bugs altogether; for example, two threads can easily deadlock
if each awaits some communication from the other. But, again
like high-level languages, the gain is very substantial: transactions
provide a programming platform for concurrency that eliminates
whole classes of concurrency errors, and allows the programmer to
concentrate on the really interesting bits.

5. The semantics of STM Haskell
So far our description of the functions in Figure 1 has been infor-
mal. It is hard to be sure that such descriptions cover all the com-
binations of these functions that might arise, so in this section we
provide a formal, operational semantics for STM Haskell.

Figure 4 gives a small-step operational semantics for a small
language whose syntax is given in Figure 2. The key idea is that
there are two transition relations: the top-level I/O transitions, writ-
ten “ −→ ”; and the STM transitions, written “⇒”. The I/O transition
relation takes a program state P ; Θ to a new program state Q; Θ′,
while performing input/output described by an action a:

P ; Θ
a−→ Q; Θ′

Execution proceeds by repeatedly choosing a thread, and execut-
ing a single I/O transition; transitions from different threads may
thereby be interleaved in a non-deterministic way. An atomic
block, however, invokes zero or more steps of the STM transition
relation, but the result state change is regarded as a single I/O tran-
sition; transitions in the STM relation therefore cannot interleave.
The semantics has no notion of transaction logs or rollback – these
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Thread soup P, Q ::= Mt | (P |Q)
Heap Θ ::= r ↪→ M

Allocations ∆ ::= r ↪→ M

Evaluation � ::= [·] | � >>=M | catch � M
contexts � ::= �t | (� |P ) | (P |�)

Action a ::= !c | ?c | ε

Figure 3: The program state and evaluation contexts

are implementation matters. Instead the semantics expresses atom-
icity simply by requiring that an atomic block, if chosen for the
next I/O transition, must reduce (using ⇒) to a return or throw,
and not to retry. The rest of this section fleshes out the details.

5.1 Syntax

Figure 2 gives the syntax of a fragment of STM Haskell. Terms and
values are entirely conventional, except that we treat the application
of monadic combinators, such as return and catch, as values.
The do-notation we have been using so far is syntactic sugar for
uses of return and >>=:

do {x<-e; Q} ≡ e >>= (\x-> do {Q})
do {e; Q} ≡ e >>= (\ -> do {Q})

do {e} ≡ e

The monadic operations return, >>=, throw, and catch are over-
loaded, and can be used in both the IO and STM monad. Specific to
the IO monad are:

getChar :: IO Char
putChar :: Char -> IO ()
forkIO :: IO a -> IO ThreadId

I/O transitions are labelled with an optional action a, describing
the input/output effect of the transition. The actions a (Figure 2)
allow reading a character c from standard input ?c, writing one to
standard output !c, or the silent action ε, which is often omitted. A
real system would have many more input/output actions.

A program stateP ; Θ consists of a thread soupP and a heap
Θ (Figure 3). A thread soup is just a multi-set of threads, each
consisting of a single term M annotated with a thread ID t. A heap,
Θ, is a finite mapping from referencesto terms.

To describe the possible transitions of a program state, we use an
evaluation contextto identify the active site for the transition. Fig-
ure 3 gives the syntax of evaluation contexts. A program evaluation
context, �, corresponds to the scheduler of a real implementation.
It chooses an arbitrary thread from the soup, and then uses the term
evaluation context � to find the active site in the term. The term
evaluation context corresponds to the stack of a real machine, and
looks into the left operand of >>=, catch, and orElse.

5.2 Operational semantics

Now we are ready to discuss the transition rules of Figure 4. First
we treat the I/O transitions, in the top part of the figure, which
can have arbitrary input/output effects. The first two rules deal
with input and output. If the active term is a putChar or getChar
the appropriate labelled transition takes place, and the operation is
replaced by a return carrying the result. Rule (FORK) allows a
new thread to be created, by adding a new term M to the thread
soup, allocating a fresh name t as its ThreadId.

Rule (ADMIN) concerns administrative transitions, which are
given in the second section of Figure 4. Rule (EVAL) allows a
term M that is not a value to be evaluated by an auxiliary func-
tion, V[[M ]], which gives the value of M . This function is entirely
standard, and we omit it here. Rule (BIND) implements sequential

composition in the monad. The rules (THROW), (CATCH1) and
(CATCH2) implement exceptions in the standard way. All of these
rules are, as we shall see, used in both the IO monad and the STM
monad, which is why we keep them in a separate group.

Everything so far is quite standard. The new part starts with
rules (ARET) and (ATHROW). The former describes how an
atomic transaction takes place: the term M makes zero or more1

transitions of the STM relation, ⇒, which takes the following form:

M ; Θ, ∆ ⇒ N ; Θ′, ∆′

Here, Θ is the heap as before, while ∆ redundantly records the al-
location effects (only) of the transition, for use during exception
handling. Rule (ARET) specifies that the term M may make zero
or more STM transitions until it reaches the form (return N), in-
dicating successful completion. In that case, rule (ARET) takes one
step, embodying the new heap Θ′ as its resulting heap. In contrast,
rule (ATHROW) specifies that if M evaluates to (throw N), then
the new heap Θ′ is discarded, and instead just the allocation effects
∆ are added to the initial heap Θ.

Rules (ATHROW) and (ARET) are the only rules in the top
panel of Figure 4 that affect the heap, so we can see immediately
that the heap can be mutated only inside an atomic block. Fur-
thermore, notice that multiple STM transitions yield a single pro-
gram transition. Program transitions from different threads can be
interleaved, but (ARET) provides no way for STM transitions to
interleave. This is precisely what it means to execute “atomically”.
(A real implementation will not do this, but we are concerned with
semantics here.)

The STM transitions themselves, in the last part of Figure 4,
are largely standard. In particular, Rules (READ), (WRITE), and
(NEW) describe how new mutable locations can be read, writ-
ten, and created; the only point of interest is that (NEW) not only
records the location’s creation in the heap, but also in the alloca-
tion record ∆, for use by (ATHROW). Rule (AADMIN) lifts the
administrative transitions into the STM world, just as t. The inter-
esting part is the orElse combinator and retry, which we tackle
next.

5.3 Blocking and nested transactions

The alert reader may be wondering why there is no rule (ARETRY)
to go along with (ARET) and (ATHROW), to account for the fact
that an STM computation may evaluate to retry, for instance:

atomic (do
{ v <- readTVar r
; if v==0 then retry else return ()
; ...})

What if v is zero? Then the body of the atomic block reduces to
retry. There is no rule for this case.This means that the transition
system cannot make progress by choosing a thread whose next
operation is an atomic block, when the heap will cause it to retry.
To make progress, another thread must be chosen.

Nested transactions are handled by rules (OR1-3). The first of
these tries the left argument of an orElse. If it succeeds normally,
then that is the result of the orElse, including any memory effects
in Θ′. If it throws an exception, that too is the result of the orElse,
and any memory effects are retained. But if M1 retries, then rule
(OR3) discards all its effects, and instead commits to M2. Notice
the strong similarity between (ARET) and (OR1), and between
(ATHROW) and (OR2); this is the sense in which we say that
orElse implements nested transactions.

An alternative design would have (OR2) behave like (OR3); that
is, if M1 throws an exception, we could discard its effects and try
M2 instead. But that would invalidate the beautiful identity which

1 The repetition is indicated by the star.
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I/O transitions P ; Θ
a−→ Q; Θ′

�[putChar c]; Θ
!c−→ �[return ()]; Θ (PUTC )

�[getChar]; Θ
?c−→ �[return c]; Θ (GETC )

�[forkIO M ]; Θ −→ (�[return t] | Mt); Θ t �∈ �, Θ, M (FORK )

M −→ N
�[M ]; Θ −→ �[N ]; Θ

(ADMIN )

M ; Θ, {} �⇒ return N ; Θ′, ∆′

�[atomic M ]; Θ −→ �[return N ]; Θ′ (ARET )
M ; Θ, {} �⇒ throw N ; Θ′, ∆′

�[atomic M ]; Θ −→ �[throw N ]; Θ ∪ ∆′ (ATHROW )

Administrative transitions M −→ N

M −→ V if V[[M ]] = V and M �≡ V (EVAL)

return N >>=M −→ M N (BIND) catch (return M) N −→ return M (CATCH1 )
throw N >>=M −→ throw N (THROW ) catch (throw M) N −→ N M (CATCH2 )

retry >>=M −→ retry (RETRY ) catch retry N −→ retry (CATCH3 )

STM transitions M ; Θ, ∆ ⇒ N ; Θ′, ∆′

�[readTVar r]; Θ, ∆ ⇒ �[return Θ(r)]; Θ, ∆ if r ∈ dom(Θ) (READ)
�[writeTVar r M ]; Θ, ∆ ⇒ �[return ()]; Θ[r �→ M ], ∆ if r ∈ dom(Θ) (WRITE)

�[newTVar M ]; Θ, ∆ ⇒ �[return r]; Θ[r �→ M ], ∆[r �→ M ] r �∈ dom(Θ) (NEW )

M −→ N
�[M ]; Θ, ∆ ⇒ �[N ]; Θ, ∆

(AADMIN )
M1; Θ, ∆

�⇒ return N ; Θ′, ∆′

�[M1 ‘orElse‘ M2]; Θ,∆ ⇒ �[return N ]; Θ′, ∆′ (OR1 )

M1; Θ, ∆
�⇒ throw N ; Θ′, ∆′

�[M1 ‘orElse‘ M2]; Θ, ∆ ⇒ �[throw N ]; Θ′, ∆′ (OR2 )
M1; Θ, ∆

�⇒ retry; Θ′, ∆′

�[M1 ‘orElse‘ M2]; Θ, ∆ ⇒ �[M2]; Θ, ∆
(OR3 )

Figure 4: Operational semantics of STM Haskell

makes retry a unit for orElse and would also make orElse
asymmetric in its treatment of exceptions (discarded from M1 but
retained for M2). This was not a hard choice to make!

6. Implementation
Our implementation is split into two layers. The top layer imple-
ments the STM operations from Figure 1. This is built on top of the
lower layer, which comprises a C library for performing memory
transactions that is integrated in the Haskell runtime system. Fig-
ure 5 shows the API to our C library; we consider the four groups
of operations in turn in Sections 6.1–6.4.

Concurrent Haskell is currently implemented only for a uni-
processor. The runtime schedules lightweight Haskell threads
within a single operating system thread. Haskell threads are only
suspended at well-defined “safe points”; they cannot be pre-empted
at arbitrary moments. This environment simplifies the implemen-
tation of our library because, by construction, C runtime functions
run without interruption.

We are confident that a multi-processor implementation is prac-
tical: our previous work has developed several techniques for build-
ing multi-processor STMs in which a multi-word atomic update
is no worse than half the speed of a uniprocessor design [10, 9].
These have been tested in practice on 1..96-CPU shared memory

machines, giving scalable performance when threads are attempt-
ing non-conflicting transactions (for instance, concurrent inserts on
different parts of a red-black tree could commit in parallel). Even in
the intensive workload we describe in Section 6.6, the commit op-
eration is less than 10% of total execution time and so the overall
consequences of using a parallel version would be low.

6.1 Transaction logs and TVar accesses

While executing a memory transaction, a thread-local transaction
log is built up recording the reads and tentative writes that the
transaction has performed. This transaction log is held in a heap-
allocated object called a TLog that is pointed to by the Thread
Control Block of the thread engaged in the transaction.

The log contains an entry for each of the TVars that the memory
transaction has accessed. Each entry contains a reference to the
TVar involved, the old valueheld in the TVar when it was first
accessed in the transaction, and the new valueto be stored in the
TVar if the transaction commits. These two values are identical in
the case a TVar that has been read but not written by the transaction.

Within a memory transaction, all TVar accesses are performed
by STMReadTVar and STMWriteTVar (Figure 5). These accesses
remain buffered within the thread’s log, and hence invisible to
other threads, until the transaction commits (Section 6.2): writes
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// Basic transaction execution
TLog *STMStart()
void *STMReadTVar(TLog *tlog, TVar *t)
void STMWriteTVar(TLog *tlog, TVar *t, void *v)

// Transaction commit operations
boolean STMIsValid(TLog *tlog)
void STMCommit(TLog *tlog)

// Blocking operations
void STMWait(TLog *tlog)
void STMUnWait(TLog *tlog)

// Nested-transaction operations
TLog *STMStartNested(TLog *outer)
void STMMergeNested(TLog *tlog)

Figure 5: The STM runtime interface

are made to the log, and reads first consult the log so that they see
preceding writes from the same transaction. Hence, a transaction
can be aborted with no effect simply by discarding its log.

Figure 6 shows the structure of TLogs and TVars. It depicts a
transaction executing the code from Section 4.1 that builds an MVar
buffer using a TVar. In (a) the TVar refers to the value Nothing
indicating that the buffer is empty. In (b) the thread reads from the
TVar, sees it to hold Nothing and creates a new log entry that
tentatively places the value 42 in the buffer. The fields depicted with
a big cross, indicating null, are discussed in subsequent sections.

Our transaction logs are ordinary heap-allocated structures. This
means that we can rely on the garbage collector to avoid A-B-A
problems.

6.2 Validation and commit

The atomic function operates by pushing an AtomicFrame entry
onto the Haskell execution stack, and invoking STMStart to al-
locate a fresh transaction log (Figure 5). When execution returns
to the AtomicFrame, the log is validated, using STMIsValid, to
check that it reflects a consistent view of memory. For each log
entry, validation checks that the old value is pointer-equal to the
current contents of the TVar. If validation succeeds, STMCommit
is called to apply the changes to the heap. Otherwise, the TLog is
discarded, a fresh transaction is started and the atomic block re-
executed. This entire validate-and-then-commit sequence is carried
out atomically with respect to all other threads – see the remarks at
the start of Section 6.

If an exception propagates to the AtomicFrame (rule ATHROW
of Figure 4) then, rather than just abandoning the transaction,
we must still call STMIsValid. This ensures that the transaction
saw a consistent view of memory, and re-executes it if not. Why?
Because it is entirely possible that the exception was thrown solely
becausethe transaction saw an inconsistent view of memory, and
the programmer must never know that this has happened.

In fact, it is also possible that an inconsistent view of memory
might lead to non-termination. For example, consider:

f :: Integer -> Bool
f x = if x==0 then True else f (n-1)

foo = atomic (do
{ x <- readTVar v
; y <- readTVar v
; if f (x-y) then ... else ... })

If foo saw memory at a moment at which x-y was less than zero,
the call to f would loop infinitely. Nontermination is an effect that
the type system does not track!

TVar1

Nothing

(a) A TVar representing a single-cell buffer. The value Nothing
indicates that the buffer is empty. The TVar’s queue of waiting

threads is empty.

TLogA

TVar1

First log entry for TLogA

Nothing

Nothing

TLogA

TVar1

Just 42

First log entry for TLogA

(b) A transaction log (TLogA) containing a tentative update to
TVar1. The transaction proposes replacing Nothing with
Just 42 which would indicate that the buffer holds 42.

Figure 6: Transaction logs

Our solution to this is simple: whenever the scheduler is about
to switch to a thread that is engaged in a transaction, the scheduler
first calls STMIsValid to check that the transaction is not already
doomed. If it is, the stack is unrolled back to the AtomicFrame and
the transaction is re-started. In this way, doomed transactions can
be killed off before they have consumed too much time. It does not
make sense to validate more frequently on a uniprocessor (indeed,
less frequently might perform better) but, as in previous work, we
might use an alternative scheme on a multiprocessor.

6.3 Blocking transactions: retry

Leaving aside the possibility of orElse for the moment, calling
retry causes the stack to be unwound searching for the enclosing
AtomicFrame — the types guarantee that exactly one such frame
exists. Then STMIsValid is called, as usual, to check that the trans-
action log has seen a consistent view of the heap, and if not the
transaction is re-run. In the consistent case, STMWait is called. It al-
locates new wait-queue entries, held in doubly-linked lists attached
to the TVars that the transaction has read, using the previously-null
field in each TVar. Once this is done, the calling thread is respon-
sible for blocking itself and re-entering the scheduler.

The wait queue entries are noticed by an STMCommit which
updates the TVars: the updater unblocks any waiters it encounters.
Once a waiting thread is rescheduled, it is responsible for calling
STMIsValid to assess whether it should retry execution of its
atomic block. If the transaction is no longer valid then STMUnWait
unlinks its wait queue entries and the caller retries its transaction
with a fresh log. If the transaction is still valid then it leaves its wait
queue entries in place, so that it can be woken by further updates,
and blocks once more – this can happen only if, by the time the
thread is scheduled, the TVars again contain pointer-equal values
to those originally read by that thread.

Figure 7 depicts two threads both waiting for updates to be
committed to the same TVar. In this case the two threads both saw
Nothing within the TVar.

6.4 Nested transactions: orElse

The final piece of the implementation is orElse, which places two
additional requirements on the STM. Firstly, proper nested trans-
actions are needed, to isolate the execution of the two alternatives:
if the first alternative retries, any updates it has proposed must be
invisible when trying the second alternative. Nesting is handled
by STMStartNested which creates a fresh log for a nested trans-
action. While executing a nested transaction, writes are recorded
(only) in the nested transaction’s log, while reads must consult both
the nested log and the logs of its enclosing transactions.
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TVar1

TLogA

TLogB

Wait queue entry for TLogA

Wait queue entry for TLogB

Nothing

TVar1

Nothing Nothing

TLogA

Nothing Nothing

TLogB

Wait queue entry for TLogA

Wait queue entry for TLogB

Figure 7: Transaction logs for two threads blocked on a TVar

If either alternative completes without retrying then the nested
transaction is validated by calling STMIsValid to check that it has
seen a consistent view of the heap. Validating a nested transaction
requires us to also validate its enclosing transactions: if any of them
has become invalid by a concurrent update then we re-execute the
whole atomic function with a fresh log. If the nested transaction is
valid then STMMergeNested is called. This examines each entry in
the nested log: if the parent already contains an entry for the TVar
involved then the new value(only) is copied from the nested log,
otherwise the entire entry is copied.

If both alternatives call retry then we propagate the retry in
such a way that the thread will wait on the union on the sets of
TVars that they have accessed. To do this, we first validate the logs
for both nested transactions. If either is invalid then we re-execute
the outer transaction with a fresh log. Otherwise, if both are valid,
we call STMMergeNested on the two logs, in either order. Figure 8
illustrates this for the case of orElse being used to combine oper-
ations on two TVars. In (a) the two nested transactions hold the ac-
cesses made within the two branches of orElse. In (b) these nested
transactions have been merged to their parent so that, if the retry
propagates to the AtomicFrame, the thread will block on the union
of the sets of TVars involved.

Note the “in either order”. There is a subtle question about
what happens when the two alternatives supplied to orElse try to
perform conflicting updates before retrying:

do { writeTVar v 10 ; possiblyRetry }
‘orElse‘
do { writeTVar v 20 ; possiblyRetry }

If both alternatives retry then their logs will hold inconsistent up-
dates to v, so the final merged log will contain either 10 or 20 as the
new valuefor v, depending on which log is the last to be merged.
However, when retrying, the new valuein the merged log does not
matter: the log will be subject only to further merges, or eventually
to STMWait.

6.5 Progress

The STM implementation guarantees that one transaction can force
another to abort only when the first one commits. As a result, the
STM implementation is lock-freein the sense that it guarantees at
any time that some running transaction can successfully commit.
For example, no deadlock will occur if one transaction reads and
writes to TVar x and then to TVar y, while a second reads and
writes to those TVars in the opposite order. Each transaction would
observe the original value of those TVars, the first to validate will
commit, and the second will abort and restart. Similarly, synchro-
nisation conflicts over TVars cannot cause cyclic restart, where two
or more transactions repeatedly abort one another.

First nested TLog

Second nested TLog

First nested TLog

Second nested TLog

TLogA TVar2

TVar1

TVar2

TVar1

First nested TLog

Second nested TLog

Nothing

Nothing Nothing

Nothing Nothing

Nothing

First nested TLog

Second nested TLog

TLogA

(a) Initially the two alternatives combined by ‘orElse‘ are run in
separate nested transactions.

Second nested TLog

TLogA

TVar2
TVar2

TVar1TVar1

Nothing

TLogA

TVar2

Nothing Nothing

Nothing

TVar2

TVar1TVar1

Nothing

Nothing Nothing

(b) If both branches retry then the two logs are merged into the
enclosing transaction and the retry propagates.

Figure 8: Two steps in the implementation of ‘orElse‘

Starvation is possible. For example, a transaction that runs for
a very long time may repeatedly conflict with shorter transactions.
We think that starvation is unlikely to occur in practice, but we
cannot tell without further experience. A transaction may also never
commit if it is waiting for a condition that never becomes true.

6.6 Performance

Evaluation of the STM implementation described here is at an early
stage, so there are no detailed performance results to report as yet.

However, initial measurements are encouraging. We wrote a
simple implemention of unbounded channels in STM Haskell,
which mirrors the channel abstraction of Concurrent Haskell [22]
implemented using MVars. We benchmarked the two implementa-
tions by measuring the time taken to communicate a large number
of values over a channel between two threads. They performed al-
most identically: runtimes were the same (to within 10%), and the
STM version allocated 50% less heap space during the run.

Why should this be the case, given that the STM version appears
to be doing more bookkeeping under the hood? The raw MVar op-
erations would outperform the equivalent TVar operations if we
benchmarked them independently, but in practice programs don’t
perform raw MVar operations. Instead, the MVar operation is nor-
mally wrapped in an exception handler that restores invariants in
the event of an exception. Further protection from asynchronous
exceptions is usually required, to prevent an asynchronous excep-
tion from arriving before the handler has been installed [17]. This
exception-robustness is implemented in the MVar-based channel li-
brary that we used, but it adds significant overhead to MVars.

In contrast, our STM code benefits from asynchronous excep-
tion safety “for free”, because each channel operation is atomic. In
short, the STM-based channels are not only clearer, but the opera-
tions are composable, and it runs just as fast as the MVar version.

7. Related work
We build on two main categories of related work. The first, dis-
cussed in Section 7.1, is work on transactional models of concur-
rency and the design and implementation of STMs. The second, in
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Sections 7.2–7.3 are the designs that have been attempted to pro-
vide forms of composability in concurrent programming languages.

7.1 Transactions

Transactions have long been used for fault-tolerance in databases [7]
and distributed systems. These transactions rely on stable storage
and distributed commit protocols to protect system integrity against
crashes and communication failures.

Nested transactions were first proposed by Moss [19], who ex-
tended nesting to two-phase locking protocols. The Argus lan-
guage [16] for fault-tolerant distributed applications provided ex-
plicit language support for nested transactions.

Distributed transactions typically provide both synchronisation,
ensuring that concurrently-executing transactions appear to execute
serially, and persistence, ensuring that state changes are backed
up on fault-tolerant, non-volatile storage. Recently, several projects
have provided persistence without synchronisation for transactions
running at a single machine [15, 26, 13].

By contrast, software transactional memory provides synchroni-
sation without persistence. Because the state manipulated by mem-
ory transactions is not intended to survive crashes or communi-
cation failures, there is no need for distributed commit protocols
or stable storage. It follows that many design and implementa-
tion issues are quite different from those arising in distributed or
persistence-only transaction systems.

Transactional memory was originally proposed as a hardware
architecture [11, 29] to support non-blocking synchronisation, and
architectural support for this model remains the subject of ongoing
research [18, 20, 24, 8]. A number of proposals have emerged for
supporting transactional memory in software [12, 27, 4, 10, 9].

Work on software transactional memory has focused on li-
braries, not on integrating transactional mechanisms into a pro-
gramming language. Two exceptions are Welc et al.[31] who show
how STM-like techniques can increase the concurrency available
in systems based on Java’s synchronized blocks, and Harris and
Fraser [9] who discuss how Java might be adapted to support non-
blocking atomic sections. In recent work Welc et al. showed how
I/O could be performed by backing off from an optimistic execu-
tion scheme to a pessimistic one – however, their approach relied
on starting with a correctly-synchronized lock-based program [30].

Prior work has not placed much emphasis on mechanisms for
conditional blocking or compositionality. Herlihy et al. [10] sup-
port syntactically nested transactions by “flattening” nested trans-
actions to a single transaction, but provide no explicit mecha-
nism for conditional blocking. Harris and Fraser [9] support con-
ditional blocking using a guarded-command syntax, but lacking
retry, such transactions could not be easily composed. Lastly, no
prior work on memory transactions supports the equivalent of the
orElse construct, which is essential for composition.

7.2 Concurrent ML

Concurrent ML [25] is an inspiring language directed squarely at
the goal of composable concurrency. The principal abstraction is
that of a first-class event, which allow far richer composition than
do conventional locks, or Concurrent Haskell’s MVars. One can
draw an analogy between a CML event and an STM action in our
language. Events can be composed as alternatives using choose,
which is similar to our orElse, and “run” using sync, which has
the same flavour as our atomic; in Haskell syntax their types are:

sync :: Event a -> a
choose :: [Event a] -> Event a

However, nothing corresponds to our notion of sequential compo-
sition of actions. Indeed, given an Event a and an Event b, one
cannot construct a compound event of type Event (a,b) that fires

only when both argument events fire. This is no accident — CML
events are carefully structured to have a single “commit point” —
but it limits the way in which events can be composed.

This same limitation does support one form of abstraction that
we cannot. A swap channeloffers the operation

swap :: SwapChan a -> a -> Event a

The idea is that two threads rendezvous at a SwapChan, and ex-
change data. But no matter how many threads are simultaneously
calling swap on the same channel, if thread A gives data to thread
B, then B’s data must go to A. We cannot support a composable
swap inside an STM transaction because that would require mutual
linkage of an arbitrary number of threads whereas STM actions rep-
resent isolated updates made by individual threads. Suppose thread
A does a swap with thread B; and then both go on to swap with
third parties (A1 and B1, say). Then if A1 is not ready, A’s trans-
action must retry; and hence so must B’s, and so must B1’s, and so
on. In contrast, it is easy to define swap-channels with the operation

swap :: SwapChan a -> a -> IO a

but this operation, having an IO type, does not compose (by de-
sign). It is perhaps interesting to note for future work that this kind
of synchronization, which is hard to build with STM, is extremely
easy to build with a chord in Benton et al.’s Polyphonic C# [1].

7.3 Scheme48 proposals

Scheme 48 proposalsare an optimistic-concurrency mechanism
that supports a subset of our notion of memory transactions [14].
Each thread maintains a log which records the reads and writes per-
formed using the operations provisional-car, provisional-
set-car!, etc. The call call-ensuring-atomicity t is just
like our atomic t; it re-runs automatically if t sees an inconsistent
view of memory.

Of course, Scheme is untyped, so the proposal mechanism can-
not offer any guarantees about effects; for example, there is no way
to ensure that the programmer only uses provisional-car etc
inside a transaction, nor that transactions refrain from doing in-
put/output. There is no mechanism for conditionally entering a pro-
posal (and blocking if the condition does not hold), let alone for our
modular retry. The programmer must resort to locks and condi-
tion variables for that. Nor is there anything like orElse.

8. Conclusion
We have shown that STM provides a substrate for concurrent pro-
gramming that offers far richer composition than has been available
to date, and that it can be implemented in a practical language.

We have used Haskell as a particularly-suitable laboratory, but
an obvious question is this: to what extent can our results be carried
back into the mainstream world of imperative programming? We
believe that the idea of using constructs like retry and orElse
can indeed be applied to other languages. For instance, in C#, one
could indicate retry by raising a specified kind of exception and
then express orElse as a particular kind of exception handler.

An interesting distinction to notice about atomic blocks in C#
or Java, when compared with Haskell, is that it would be necessary
to support dynamic nesting. The reason is that, in Haskell, the code
within an atomic block has an STM type and so the only way it
can be run is by atomic execution: library operations do not need
to ensure atomicity internally because it will be provided by their
callers. In contrast, in a traditional imperative language, atomicity
would be the responsibility of the callee rather than the caller and
so it may be provided defensively at multiple levels in a call chain.

In an imperative setting it is less clear how to statically prevent
operations with irreversible side effects being performed within
transactions: there is not ordinarily any way of indicating possible
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effects other than (in some languages) the sets of exceptions that a
method may raise. Whether or not one believes in transactions, it
does seem likely that some combination of effect systems and/or
ownership types [2] will play an increasingly important role in
concurrent programming languages, and these may contribute to
the guarantees desirable for memory transactions.

Our implementation forms part of GHC 6.4, which is publicly
available at http://haskell.org/ghc. Our current implemen-
tation is for uni-processor, but we plan to work on a true multi-
processor implementation in 2005.
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A. Exception semantics
Since publishing the paper we have become convinvced that we should
make a small change to the semantics of exceptions in STM code. This
Appendix describes the change, and our reasoning. The new semantics is
what GHC 6.6 actually implements.

Consider this code:
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f :: Port Int -> STM ()
f p = do { item <- readPort p

; g item }

If g goes wrong (throws an exception), the author of f might reasonably
want to ensure that the item is not read from the port p and then discarded.
And indeed, if f is called in an atomic context, such as atomic (f p),
the effects of readPort are discarded, so that the item is not read. But
suppose f is called in a context that catches the exception before leaving
the STM world:

bad :: Port Int -> Port Int -> STM ()
bad p1 p2 = catch (f p1) (\exn -> f p2)

In the semantics given in the body of the paper, the effects of (f p1)
are visible to the call (f p2). Furthermore, if the latter succeeds without
itself throwing an exception or retrying, the effects of (f p1) may be
permanently committed.

This treatment of effects that precede an exception seems inconsisent.
Furthermore, consider the author of f. In an effort to ensure that the item is
indeed not read if g throws an exception, he might try this:

f :: Port Int -> STM ()
f p = do { item <- readPort p

; catch (g item) (recover exn item) }
where
recover exn item

= do { unReadPort p item
; throw exn }

But that relies on the existence of unReadPort; and it’s unnecessary if the
exception propagates to an atomic.

The conclusion is clear: the effects of the first argument of catch
should be reverted if the computation rasies an exception. More precisely,
here are the changes to the semantics. Instead of dealing with catch via
administrative reductions, shared between both IO and STM transitions, we
must have separate rules for the two worlds.

First, move rules (CATCH1) and (CATCH2) from the administrative
transitions of Figure 4, to the I/O transitions, where they become:

�[catch (return M) N ]; Θ −→ �[return M ]; Θ (CATCH1 )
�[catch (throw P ) N ]; Θ −→ �[N P ]; Θ (CATCH2 )

Next, we need to use a different evaluation context for STM computations,
one that does not “look insside” a catch. To to this, we add a new STM
evaluation context � to Figure 3:

� ::= [·] | � >>=M

In the STM transitions of Figure 4, replace all uses of � with �. Lastly,
remove rule (CATCH3), and instead add the following three new STM
transitions:

M ; Θ, {} �⇒ return P ; Θ′, ∆′

�[catch M N ]; Θ, ∆ ⇒ �[return P ]; Θ′, (∆ ∪ ∆′)
(XSTM1 )

M ; Θ, {} �⇒ throw P ; Θ′, ∆′

�[catch M N ]; Θ, ∆ ⇒ �[N P ]; (Θ ∪ ∆′), (∆ ∪ ∆′)
(XSTM2 )

M ; Θ, {} �⇒ retry; Θ′, ∆′

�[catch M N ]; Θ, ∆ ⇒ �[retry]; Θ, ∆
(XSTM3 )

All three rules run the first arument of catch, starting with the current
store Θ, and an emptyset of allocation effects {}. Then, if the computation
finishes normally (XSTM1) the catch frame is discarded, and all the effects
are preserved. If the computation finished with a throw (XSTM2), the
exception value P is given to the handler N , but only the allocation effects
of M are preserved. It is necessary to preserve M’s allocation effects for the
same reason that we do so in rule (ATHROW): P may contain a reference
to a TVar allocated by M .

Finally, if M ends in a retry, all effects are discarded (XSTM3).
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