

Champagne Prototyping: A Research Technique for Early Evaluation of
Complex End-User Programming Systems

Alan F. Blackwell

University of Cambridge
Alan.Blackwell@cl.cam.ac.uk

Margaret M. Burnett
Oregon State University

burnett@cs.orst.edu

Simon Peyton Jones
Microsoft Research

simonpj@microsoft.com

Abstract

Although a variety of evaluation techniques are
available to researchers of visual and end-user
programming systems, they are primarily suited to
evaluation of research systems. It is important to have
evaluation techniques suitable for real-world
programming environments, in order to satisfy real-
world product managers of the usefulness of proposed
new features. To help fill this gap, we present a new
evaluation technique, based in part on Cognitive
Dimensions and Attention Investment, called
“Champagne Prototyping”. The technique is an early-
evaluation technique that is inexpensive to do, yet
features the credibility that comes from being based on
the real commercial environment of interest, and from
working with real users of the environment.

1. Introduction

This paper introduces “Champagne Prototyping”1, a
low-budget research technique for use during the early
prototyping phase of designing changes to end-user
programming systems. It includes a method for solic-
iting user feedback on a new programmable feature
and a method for analyzing this feedback in a struc-
tured manner. It combines the important advantages of
not requiring availability of a complete prototype,
while still allowing limited interactive exploration of a
predefined scenario.

We developed our approach in response to the
following research situation. We were designing
changes to an existing, large and complex commercial
system (Microsoft Excel), rather than designing or
enhancing a research system. Furthermore, we needed
to obtain usability information from human users even
though there were no student assistants or research
staff dedicated to this project. Thus, we needed a
relatively cheap approach.

1 The origin of this name becomes clear in Section 4.

Our approach contains two innovations in research
methodology. First, it introduces a new way to use
Cognitive Dimensions and the Attention Investment
model (described in Section 2), using them to classify
actual activities done and observations made by actual
users. Further, our case study helps to independently
validate CDs and the Attention Investment model. This
validation comes in the form of explanations and
observations made by our end users, in which they
themselves pointed out instances of CD and Attention
Investment concepts.

Second, the approach introduces a new variant of
the “Wizard of Oz” technique that is especially rele-
vant to end-user programming research. With the
Wizard of Oz, a researcher simulates the system be-
hind the scenes while the user interacts with an inter-
face mock-up. The researcher “executes” the way the
non-implemented system is supposed to respond to a
user’s interactions, causing appropriate output to ap-
pear. Evaluating programmable systems is a challenge
for Wizard of Oz, because simulating the effect of exe-
cuting can be almost impossible for a human re-
searcher. For example, if the user’s program
manipulates large amounts of data, or if the
environment contains many subtle interactive features,
the likelihood of a human researcher correctly
“executing” all the subtleties correctly is small. (Both
of these situations are true of most Excel
spreadsheets.)

Like classic Wizard of Oz, with Champagne
Prototyping users get the impression the entire system
is executable. Unlike classic Wizard of Oz,
Champagne Prototyping gives the user access to a rich
interactive environment that genuinely can be executed
on the computer—but the core feature of interest is not
actually executable by the computer or even by the
researcher. The rich executable context allows the user
to interact with the system in order to understand the
circumstances in which the new feature would be ap-
plied and the effects it will have, but finesses the fact
that the feature itself has not been implemented.

Champagne Prototyping is still in its infancy, but
our experience suggests that it is a promising approach

for evaluating design changes to real-world end-user
programming systems. In this paper, we describe our
experience with the approach through a detailed case
study. We hope that other researchers interested in the
complexities of improving existing, real-world end-
user programming systems will benefit from this tech-
nique, and perhaps, through subsequent use of it, will
contribute refinements of their own.

2. Background to the project

In previous work, we had developed an approach to
supporting the creation of user-defined functions in
Excel, in which user-defined functions are imple-
mented as separate spreadsheets [8]. These “functions
as worksheets” are parameterized by example, and can
be used in formulae via syntax identical to that of
existing functions. (In the current commercial version
of Excel, user-defined functions must instead be
defined in a procedural programming language.) One
implication of this approach is that it must be possible
to pass spreadsheet regions to and from these functions
as a single parameter. This means in turn that Excel
must be extended with a matrix data type, where a
whole matrix can be stored in a single cell and
manipulated in matrix formulae.

What methods had we applied to address usability
issues earlier in the project? Our design work on user-
defined functions made use of the Cognitive
Dimensions of Notations (CDs) framework, in the
manner originally proposed by Green & Petre [5].
Green and Petre hoped that CDs would raise the level
of discussion around programming language design,
by providing a “discussion vocabulary”, for use by
designers to discuss and track important properties of a
design as it evolves over time. Two of us were
experienced in the use of CDs, and we used them ex-
tensively during design discussions in order to offer
critiques of possible solutions, and to identify likely
work-arounds or trade-offs.

The Attention Investment model of abstraction use
[2] has also been proposed as a discussion tool, where
a simple model of cognition allows designers to antici-
pate likely end-user programming behaviour. This
further design vocabulary was still under development,
but we found that, as with CDs, it provided a useful
basis on which to discuss and document design ration-
ale for the implementation of user-defined functions.

The results of these discussions were preserved in a
record of design rationale, as seen in Figure 1. This
figure reproduces a page of our design documentation,
in which for each user task (represented by a row), the
left column showed our design sketches, notes, and
trade-off decisions, while the right column contained

justifications and issues raised by Cognitive
Dimensions, Attention Investment, and Representation
Benchmarks [9].

3. The problem

At the start of the study we report here, user-defined
functions had been accepted by the Excel team as
likely to be useful in future versions of Excel.
However the precise manner in which the new user-
defined functions might be implemented had not yet
been finalized. In particular, as noted above, we
believed that support for matrix values in a single cell
was a highly desirable feature, to support parameters
and return values from function sheets. We also
believed that matrix values would bring a number of
other valuable benefits to advanced Excel users.

However, we encountered a certain healthy skepti-
cism about whether those benefits would really be
achieved. In particular, would our target audience
understand the idea of a matrix value inhabiting a cell
of an Excel worksheet? One of the few aspects of the
Excel design that has remained constant over many
years is that each cell in a spreadsheet contains a single
scalar value. If we put multiple values in a single cell,
wouldn’t this completely disrupt users’ mental model
of the spreadsheet? The Excel team were quite rea-
sonably concerned about the consequences of making
such a radical change to the product.

How can researchers and designers deal with this
kind of deep question at requirements specification
time? It is always possible to argue to and fro about
what will or will not be intuitive to some notional user.
But these arguments represent the opinions of
designers rather than those of end users.

In short, the challenge we address in this paper is:
how can a designer gather at least some objective data
about a proposed design change to an existing, com-

Figure 1. This (deliberately illegible) screenshot shows
one of our working design documents, recording design
rationale in terms of Cognitive Dimensions and Attention
Investment alongside proposed features.

plex environment, at a very early stage in the design
cycle, and at acceptable cost?

3.1 Prototyping

The most obvious step for us to take was to advo-
cate a full-scale user study, based on a working proto-
type. However, even in a large company, there is often
insufficient resource to prototype every potential
feature, in order to conduct usability studies on it.
Instead, usability testing is usually focused on
laboratory studies of already-implemented features,
with a view to tuning their design in detail.

Nevertheless—although we know better now—we
did indeed construct three different prototypes to ex-
plore proposed designs for a user-defined function
interface. The first was implemented within a current
release of Excel, using Visual Basic. It simulated the
creation of a user-defined function by program-
matically creating a new sheet within the open work-
book, and populating it with parameter values (always
the same values). The disadvantage of this technique,
beyond the fact that it could only be used to simulate
the creation of a single function with a single set of
parameters, was that it did not allow us to evaluate user
interface features that were different in appearance to
standard Excel, since the entire interface was
implemented in standard Excel.

We therefore implemented a second prototype in
Macromedia Director, using the Lingo scripting lan-
guage to simulate spreadsheet recalculation for any
values entered by the user. Although this allowed us to
simulate the appearance of any new interface elements
we wanted, the cost of simulating a sufficiently large
subset of spreadsheet behaviour in Lingo was far too
high to support unconstrained user operation.

We also made a third, “click-through,” prototype
that was less ambitious than either of the first two. This
was implemented using PowerPoint, with each slide in
the presentation containing a complete rendering of the
user interface, and each successive slide changing in
response to a predetermined user action. This allowed
us to simulate any appearance of the interface, but with
no flexibility at all in the user’s interaction – each click
has a single predetermined effect. Although it can be
used convincingly in demos by a researcher who
knows where to click, it quickly becomes unconvinc-
ing when used in an experimental situation.

3.2 What we learned

The conclusion of our prototyping work was this:
prototypes are often either too expensive or too cheap.
While our prototypes helped us to refine our ideas and

to articulate them to others, they were inadequate to
test hypotheses such as “do users understand matrix
values”. More specifically:
• To support usability tests, the environment, or

context, must be fully functional. It is no good
having a new feature that “works” but in a
simulation of an existing system that does not work
as well as the existing system. This was the
problem with Prototype 2.

• Hence the prototype must be based on the existing
product, because the latter is too complex to simu-
late accurately. However substantial new features
are likely to be hard to program as extensions of a
commercial product, as we found in Prototype 1.

• Screen-shot prototypes, such as Prototype 3, are
useful for demonstration purposes, but have
obvious shortcomings for usability studies, meeting
neither the requirement of a functional context nor
a realistic implementation of the feature of interest.
In response to these experiences in prototyping, we

combined the most successful features of our early
prototypes to create a “middle ground” – the
Champagne Prototyping approach described in the
next section.

4. A “Champagne Prototype” study

The main burden of this paper is to present and
evaluate a technique that allows early and cheap
evaluation of proposed designs. The emphasis on
cheapness is a feature, not a bug: 20 cheap studies of a
variety of ideas and features are likely to be far more
valuable than one expensive study of a particular fea-
ture. To give a sense of scale, we budgeted around 5
person-days and £100 in direct costs to investigate user
responses to our proposed matrix-in-cell feature.

The main features of this approach are:
• A crisp question and a cheap prototype directed

at that particular question (Section 4.1)
• A small number of highly credible participants

(Section 4.2)
• Scenario-based interviews carried out by a re-

searcher (Sections 4.3, 4.4)
• Coding using CDs and Attention Investment as

the analysis framework (Section 4.5)

4.1 The prototype used

Recall that the question we sought to answer was
would our target audience understand the idea of a
matrix value inhabiting a cell of an Excel worksheet?
Having learned from our mixed experiences with con-
ventional prototyping techniques, we created a fourth
low-cost prototype, specifically to assess user experi-

ence of matrices. It provided a close (but non-func-
tional) visual simulation of the new feature, within a
realistic interactive context, so that users could explore
its benefits.

To create this prototype, we returned to a current
release of Excel as an implementation base, but created
pixel-level simulations (in Photoshop) of the appear-
ance of each cell that would contain a matrix value
(see Figure 2). The spreadsheet cells in which matrix
values would be located were enlarged manually to
accommodate the matrix image, which was then pasted
into the spreadsheet. Cells cannot have image values in
the current Excel release, so the image of the matrix
value actually “floated” over the grid, but were pre-
cisely aligned so that the cell under the image was not
visible. The actual cell value, hidden under the image,
was a string containing a simulated matrix formula. Of
course the current implementation of Excel does not
support matrix syntax, so the string did not start with
an “=” (which would cause evaluation, and lead to a
syntax error), but with a space character, followed by
the rest of the simulated formula.

As a result, when the user moved the cursor posi-
tion to one of the cells containing the new feature, they
would see a formula appear at the top of the screen that
appeared to have generated the simulated matrix value.
No users noticed the space at the start of the formula,
or realized that the features they were exploring were
not really implemented. Of course it was not possible
for users to change any values in the spreadsheet (be-
cause the simulated image would not change, and the
“formula” would not be recalculated), but the task was
presented in a way that encouraged exploration and
interpretation of the experimental spreadsheets rather
than modification. This provides a far more realistic
experience of programmable systems than is possible
with conventional Wizard of Oz techniques. Users
were able to explore the spreadsheet exactly as in stan-
dard Excel, with all of the usual appearances, options,
menus, etc., fully operational. No user in our study
attempted to change any values, so none of them real-
ized the functional limitations of our simulation.

To summarise, our prototype uses a simple trick to
layer new functionality on top of a working system,
and it supports a “look don’t touch” style of
interaction, in which data can be explored but not
modified.

4.2 Recruitment of participants

A central aspect of Champagne Prototyping is that
highly credible participants can be used to evaluate the
new feature. Research definitions of end-user devel-
opers generally emphasise that the end-user developer

is a mature expert in his or her own field, who happens
not to be a professional programmer [7]. We therefore
wanted to recruit study participants who were expert
users of spreadsheets, and who had sufficiently sophis-
ticated requirements that they were likely to use matrix
data or develop reusable functions, but who were not
professional programmers.

Note that we would not expect every Excel user to
employ matrix values, even if these are included in
future product releases. This is a relatively
sophisticated feature, which would normally be used
by users who are mathematically comfortable with
matrix operations. We therefore needed to recruit par-
ticipants who, while not professional programmers or
computer scientists, were representative of this kind of
advanced Excel usage. We chose the field of financial
modeling as an ideal domain in which to find such
users.

A challenge in recruiting expert participants for re-
search studies is that they are very busy people, whose
time is very valuable. Whereas students are generally
willing to participate in an experiment for an incentive
payment of a few pounds, academic experts in finan-
cial modeling are likely to value their consultancy time
at hundreds of pounds per hour. We therefore needed
an incentive more likely to catch the attention of mem-
bers of our target population. When our researcher (the
first author) entered the office of a prospective partici-
pant, he therefore offered a bottle of champagne.

Potential participants were selected from the
finance group and decision science group at the Judge
Institute for Management Studies. The interviewer
approached participants without an appointment, but
carrying the bottle of champagne in order to stimulate
curiosity and motivate immediate participation.
Although it is more common to make appointments for
participation in usability studies, our experience is that
experts of this kind are unwilling to make appoint-
ments other than for essential meetings.

On approaching a potential participant, the
interviewer asked two qualifying questions to confirm
that he or she used Excel, and was familiar with
formulae in Excel. In order to confirm understanding
of formulae, the interviewer asked what happens when

Figure 2. Proposed matrix-in-cell feature for Excel. (Small
arrowheads indicate that the matrix extends further than
the visible area of that cell)

you copy a cell with a formula in it and paste it
elsewhere. If the participant was aware that cell
addresses in a formula would be updated relative to the
new position, they were invited to participate in the
study. Six participants were recruited.

4.3 Problem scenario and interview structure

The structure of our experimental task was largely
determined by our concern with discovering whether
users would be able to understand the concept of ma-
trix values. We did not want to prompt participants in
advance by making any references to matrices. Instead,
we designed a task and interview structure so that
users would encounter matrices in the context of regu-
lar spreadsheet usage, in much the same way that many
users encounter advanced features—in a spreadsheet
that has been constructed by someone else, and which
they are trying to apply or modify when they encounter
the new feature.

We started by explaining that the motivation of this
study was to evaluate a proposed new feature of Excel,
with the objective of finding out whether or not it is
self-explanatory. The purpose of this wording was to
focus the remainder of the interview on the product,
rather than on user performance. Users often feel
threatened when asked to interpret complex features
that they do not immediately understand, and we
wanted to minimize this possibility.

We then presented a problem scenario, using a
spreadsheet that was constructed in standard Excel,
with no additional features. A fragment of the sample
spreadsheet is shown in Figure 3. The purpose of the
sheet was explained as comparing revenue from a
chain of stores, in order to determine what proportion
of revenue is derived from high-priced and low-priced
items at each of two chains during financial analysis
for a possible merger or acquisition.

The interviewer drew the attention of the participant
to the regular structure of the formulae in this spread-

sheet, which involved similar calculations being re-
peated a variable number of times, dependent on the
amount of input data (the number of stores in each
chain). This is a scenario in which a matrix might be a
more efficient way for a sophisticated user to imple-
ment operations on variable sized data, although our
interviewer said nothing further at this point to suggest
any such possibility. Participants were given the op-
portunity at this time to explore any aspect of the sam-
ple spreadsheet, and to ask any questions, if they
wished to do so, about its design or behaviour.

Figure 4. Problem scenario using matrices

Once participants were satisfied that they under-
stood this standard Excel spreadsheet, a separate
spreadsheet window was brought to the front. This
window simulated the appearance of matrix values
using overlaid graphics (Figure 4), in the manner de-
scribed above. The interviewer gave no explanation to
the participant, simply saying that this spreadsheet
included the proposed new feature, and that we wished
to know whether it was self-explanatory.

If the participant did not notice the modified cells,
his attention was drawn to that cell, and he was asked
again if it was self-explanatory. He was asked if he
could explain how it was being used, and if he under-
stood how the other cells in the spreadsheet were being
used. In each case, participants were free to view the
(simulated) matrix formulae in each cell. If they did
not specifically mention the formulae, they were asked
if they could interpret the formula for that cell. If they
did not specifically mention the fact that larger
matrices do not “fit” visually into a single cell, they
were asked what was happening at the edges of that
cell. These questions were all carefully designed to
avoid giving the impression that we were evaluating
the participants, instead emphasising that we were
evaluating the system.

At the end of the interview, participants were asked
to assess the utility of the feature, whether they would
find it personally useful, and whether they would
recommend that it be included in future versions of
Excel. They were also asked about their own
experience with programming languages, how long
they had been using Excel, and whether they were
familiar with matrices in a mathematical context.

Figure 3. Problem scenario in standard Excel

4.4 Recording technique

The whole of each interview was recorded using a
compact digital video camera that was placed on the
participant’s desk, on a small tripod behind the raised
screen of our laptop running the Excel prototype. The
video camera and laptop were both running before
entering the office of the participant, so that they could
simply be placed on his desk for an immediate start to
the interview if he agreed to participate.

The interviewer sat next to the participant, in order
to be able to point to the screen, and also change from
the original scenario (unmodified Excel) to the evalua-
tion version.

Each interview was transcribed by one of the re-
search team, from the point at which participants were
asked to interpret the scenario until the end of the
session. These transcripts were then used as the source
material for the remainder of the analysis.

4.5 Analysis and coding technique

Every transcribed statement from the participants
was independently coded by two raters (the first and
second authors), by assigning one or more codes from
Table 1 and Table 2 to each of the user’s utterances.
This coding framework included both specific ques-
tions regarding comprehension of the proposed matrix
feature and also more generic design principles. In the
case of comprehension questions, we were interested
in whether participants volunteered an observation
with no prompting, after prompting, or not at all, as
shown in Table 1. Generic design principles were
coded by correspondence to the Cognitive Dimensions
and Attention Investment frameworks, as shown in
Table 2.

As noted earlier, we did not specifically prompt
participants with regard to either CDs or Attention
Investment. This is in contrast to the research approach
taken in the CDs questionnaire [3], where participants
are specifically instructed to adopt the analytic per-
spective of the CDs framework. In the current study,
we instead elicited their understanding and opinions of
the two “possible” Excel solutions to the same prob-
lem, without any use of CD-like vocabulary. CDs were
not introduced until in the data analysis phase, as a
systematic means of classifying the participants’
observations.

4.6 Results of the case study

The results of our particular use of the Champagne
Prototyping technique are presented here as a demon-
stration of the kind of information that can be elicited,
even from such an inexpensive study.

Features of matrices
that are recognised

Without
prompt

With
prompt

Not
noted

Cells contain matrix
values

●●● ● ●

Many cells may map
onto one cell

●●●●
●○○○

○

Matrices can be
intermediate values

●●●○ ●

Feature brings labour
saving advantages

●●●○
○

○○ ●●

Table 1. Comprehension of proposed matrix feature.
Number of bullets shows the number of times each item
was mentioned by a respondent. Where a respondent
mentioned an item repeatedly, open circles are shown.

Cognitive Dimensions
Visibility: how to see the remainder of the
matrix

●●●●
●○

Error-proneness a) increases scope for error ●●
Error-proneness b) reduces scope for error ●
Abstraction tolerance: allow multiple
operations defined at once

●●●

Abstraction barrier: only accessible to expert
users

●●

Repetition viscosity: matrices reduce repetition ●
Domino viscosity: matrices reduce the
consequent effects of change

●

Hidden dependencies: use of matrices may
hide valuable relationships between data items

●●●

Closeness of mapping: relates to matrices users
are familiar with

●

Consistency: matrix formulae work like cell
formulae

●●●●○

Attention Investment
Investment risk: what may go wrong when
matrices are used

●●

Investment cost: attentional effort of using
matrices

●●●

Investment payoff: effort to be saved as a
result of using matrices

●●

Manual alternative: basis of decision not to use
matrices

●●

Table 2. Frequencies of coded statements from CDs and
Attention Investment frameworks. Note that some CDs
were never mentioned, and are not included in the table,
so this is not a complete list of CDs.

Participant profile. We interviewed six partici-
pants. Five had financial or decision science back-
grounds, and all had at least 10 years experience of
using Excel. The sixth had a more conventional ac-
counting background, and had only 5 years experience
of Excel use. He was included in an attempt to explore
how matrices might be received by Excel users with
less mathematical experience. In fact during the course
of the interview, it became clear that he had never
created spreadsheets for any purpose other than con-

ventional double-entry accounting, and used only very
simple formulae to add and subtract columns.
Although we did learn some interesting things about
the work of this user, he was not within the target user
base for the matrices feature, so is excluded from the
rest of this analysis.

The remaining five participants stated (at the end of
the interview) that they were familiar with the
mathematical application of matrices. Three had some
experience of conventional programming languages,
all in FORTRAN “long ago”. The other two had not
used general purpose programming languages, but
were familiar with specialist languages for statistical
and econometric modeling. Several drew contrasts
between the relatively mundane tasks for which they
(or students) would use Excel, in contrast to the
powerful facilities of these languages.

Comprehension of matrix feature: As shown in
Table 1, all participants understood the significance of
the proposed matrix feature, and nearly all without
prompting. Only one participant failed to comment on
the fact that Excel could now support matrix
operations, and even this person, when asked if he had
experience of matrices, said “yes; if someone hadn’t
they might not find it as easy,” so clearly understood
this connection. Several participants made unprompted
statements about various labour-saving advantages of
the feature (“this is very helpful”).

Cognitive Dimensions: Our five participants made
a total of 25 observations related to the concerns of the
CDs framework. These encompassed both negative
and positive implications of the feature, as would be
expected by the importance within CDs of recognizing
the trade-offs of design changes. A well-known trade-
off in CDs analysis is that more abstract features can
reduce viscosity (“allowing you to do a calculation just
once”), at the expense of introducing hidden
dependencies (“there’s some hidden stuff going on
here”) and an abstraction barrier (“there would
probably be power users that would use it”).

Our visual design “compressed” matrix values into
a single cell by using a small font, and indicating that
the matrix extended further than the region visible
within that cell. This is a key element of our design
concept (we were motivated by the CD of diffuseness)
but we were surprised at how many participants were
concerned about the corresponding trade-off in
visibility (“I like to see as much of the calculation as
possible”).

There were multiple positive comments about the
way that our design used existing knowledge, and was
consistent with the rest of Excel (“It’s treating the cell
as an array”, “that’s very clear”).

Attention Investment: Participants made some ref-
erence to all of the motivating factors analysed in the
Attention Investment framework, including the effort
devoted to repetitive manual work (“I guess you’d still
have to type in all these other lines as you did before”),
the attentional cost of working at a more abstract level
(“can’t see that for a lot of users they would necessar-
ily use it”), the resulting automation payoff (“then this
part would be automatically updated”) and the risks
that result from working at this increased level of ab-
straction (“One issue I can see would be error tracking.
It’s difficult enough when you have the cells more
simply calculated”).

Commercial questions: Our sponsor also had an
interest in the perceived commercial potential of the
proposed feature. Two participants said they would
recommend inclusion of this feature in the product,
one that he would pay extra for the feature, and one
that he would receive benefits from the feature via the
improvements that it would allow to third party prod-
ucts. Although not directly related to our theoretical
interests, these findings will help us to gain further
support for research of this kind.

Reliability analysis: 66 coding assignments were
made by the two raters. 39 of these were assigned
identically by both raters without any consultation,
while 25 were agreed when the raters compared their
initial assignments. Calculation of Cohen’s Kappa
statistic shows that agreement between the raters
(when corrected for chance agreements) is 88%. This
is a relatively high degree of reliability for raters using
a predefined coding frame (as opposed to a coding
frame derived from the data).

5. Discussion and previous work

There are other low-cost evaluation techniques used
in early stages of user interface design, many of them
excellent. However, we believe that the Champagne
Prototyping approach helps fill a gap that has not been
well addressed before, namely evaluating design
changes or additions to existing, real-world end-user
programming systems.

A common early design step in the process of con-
textual design [1] is to observe users in their work
context, systematically identify their unspoken require-
ments, and derive new feature proposals from those
requirements. This step is useful for designing new
features, but does not help to evaluate the new features
once they have been designed.

When designers already have a concept for a new
design, but it would be expensive to fully implement
that design, a common strategy is “low-fidelity” pro-
totyping, where paper sketches of the new design are

evaluated by asking potential users to “operate” them
with a researcher acting as a Wizard of Oz to simulate
the system response [6]. As we have argued above, in
the case of familiar existing systems like Excel with
complex internal state, it is extremely difficult to
simulate the many features with which expert users
readily explore that state.

Where a partially operating prototype is available, a
common strategy is to use a “think-aloud” protocol
such that users constantly introspect and report on the
reasoning underlying their actions in using the proto-
type [4]. Champagne Prototyping can be thought of as
a “neighbor” of this approach in the sense that it too
uses freely-offered verbal data; however, its interview
format is much more structured than the think-aloud
protocol. The interview format directly elicits the exact
information sought.

Finally, CDs and Attention Investment are useful
analysis approaches, providing a discussion vocabulary
for designers to discuss early concepts, but in that role
they do not elicit information from users themselves. A
CDs questionnaire [3] has also been developed to elicit
CD-based feedback from users, but it is only relevant
when users are highly expert with the features in-
volved, and thus is not well suited to evaluating
completely new features. By using them as a coding
framework, we avoid one of the most difficult parts of
content analysis, which is the development of a new
coding frame based on respondent data.

The Champagne Prototyping technique is therefore
complementary to these other methods. It is especially
useful in the early design evaluation of new features
proposed for complex, real-world end-user
programming systems.

The technique requires some mechanism for
tinkering with the system’s appearances without inter-
fering with the system’s ability to execute normally in
most respects. (The pasted-in Photoshop images and
uses of strings to masquerade as formulas were the
mechanisms used in our case study.) Using such
mechanisms, the technique introduces the new feature
in context, so that informants are able to assess how
their work might change as a result of the new feature,
including any costs, benefits, risks, and trade-offs they
see associated with these changes.

6. Conclusion

This paper introduces Champagne Prototyping, a
new evaluation technique for evaluating design
changes to existing, real-world visual or end-user
programming systems. Its main features are a crisp
question, a cheap prototype aimed at the question, a
small number of highly credible participants, inter-

view, and evaluation of transcripts using CDs and
Attention Investment. Our experience with it, de-
scribed via the case study in this paper, has shown it to
produce useful information at a relatively low cost.
This is particularly interesting, considering the amount
of effort that we ourselves put into previous attempts at
prototyping – work that would have been unnecessary
if we had known of this approach in advance.

Furthermore, our case study has helped to validate
the CDs and Attention Investment approaches, by
demonstrating that users take the initiative to point out
these “cognitively relevant properties”—without prior
briefing in these concepts or vocabulary.

7. Acknowledgements

We are grateful to Microsoft Research Limited for
funding this research, and also to the study
participants. Blackwell’s and Burnett’s work was also
supported in part by the EUSES Consortium via NSF
grant ITR-0325273.

8. References

[1] Beyer, H. & Holtzblatt, A. (1997). Contextual Design:
A Customer-Centered Approach to Systems Design.
Morgan Kaufmann.

[2] Blackwell, A.F. (2002). First steps in programming: A
rationale for Attention Investment models. Proc. IEEE
Symp. Human-Centric Computing Languages and
Environments, 2-10.

[3] Blackwell, A.F. & Green, T.R.G. (2000). A Cognitive
Dimensions questionnaire optimised for users. In A.F.
Blackwell & E. Bilotta (Eds.) Proc. 12th Annual Mtg.
Psychology of Programming Interest Group, 137-152.

[4] Ericsson, K. A. & Simon, H. A. (1993). Protocol
Analysis: Verbal Reports as Data. MIT Press.

[5] Green, T.R.G. & Petre, M. (1996) Usability analysis of
visual programming environments: a 'cognitive dimen-
sions' framework. J. Visual Languages and Computing,
7, 131-174.

[6] Landauer, T.K. (1987). Psychology as a mother of
invention. Plenary Address, ACM CHI, 333-335.

[7] Nardi, B.A. (1993), A Small Matter of Programming:
Perspectives on End-User Computing, MIT Press,
Cambridge, Mass.

[8] Peyton Jones, S., Blackwell, A.F., & Burnett, M.
(2003). A user-centred approach to functions in Excel.
Proc. Int. Conf. Functional Programming, 165-176.

[9] Yang, S., Burnett, M., DeKoven, E., & Zloof, M.
(Oct./Dec. 1997). Representation design benchmarks: A
design-time aid for VPL navigable static
representations, J. Visual Languages and Computing,
563-599.

