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Abstract

Instead of maximum-likelihood or MAP, Bayesian inference encourages the use of pre-
dictive densities and evidence scores. This is illustrated in the context of the multinomial
distribution, where predictive estimates are often used but rarely described as Bayesian.
By using an entropy approximation to the evidence, many Bayesian quantities can be ex-
pressed in information-theoretic terms. For example, testing whether two samples come
from the same distribution or testing whether two variables are independent boils down
to a mutual information score (with appropriate smoothing). The same analysis can be
applied to discrete Markov chains to get a test for Markovianity.

1 Introduction

Let x be a discrete variable taking on values 1, 2, ..., K. The set of probability distributions on
x can be parameterized by a vector p where p(x = k) = pk. Another way to write this is

p(x|p) =
K
∏

k=1

p
δ(x=k)
k (1)

where δ(x = k) is an indicator function. The joint probability of N IID samplesX = {x1, ..., xN}
is therefore

p(X|p) =
K
∏

k=1

pNk

k (2)

Nk =
∑

i

δ(xi = k) (3)

The joint probability of a set of counts Nk, on the other hand, is

p(N1..NK |p) =

(

N

N1..NK

)

K
∏

k=1

pNk

k (4)

since we must account for all possible permutations. Both are multinomial distributions with
parameter p.
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A conjugate prior for p is the Dirichlet distribution:

p(p|α) ∼ D(α1, ..., αK) =
Γ(
∑

k αk)
∏

k Γ(αk)

∏

k

pαk−1
k (5)

where pk > 0 (6)
∑

k

pk = 1 (7)

The hyperparameter αk can be interpreted as a virtual count for value k, before seeing X.
Large α correspond to strong prior knowledge about the distribution and small α correspond
to ignorance. The Beta distribution is the special case when K = 2. The Dirichlet distribution
has the properties

p(p1|α) ∼ D(α1, α2 + ...+ αK) (8)

E[p1] =
α1

∑

k αk

(9)

E[log p1] = Ψ(α1)−Ψ(
∑

k

αk) (10)

where Ψ(x) =
Γ′(x)

Γ(x)
(11)

The maximum of the density is at pk = (αk − 1)/((
∑

k αk) − K), when this value is valid.
Otherwise, pk corresponding to the smallest αk must be zero. The remaining p’s have a Dirichlet
distribution among themselves which can be maximized recursively. If instead all α’s are equal
and less than 1, then the maxima consist of all binary p’s.

Given a Dirichlet prior, the joint distribution of a set of samples X and p is

p(X,p|α) =
Γ(
∑

k αk)
∏

k Γ(αk)

∏

k

pNk+αk−1
k (12)

so the posterior is
p(p|X, α) ∼ D(Nk + αk) (13)

and the evidence is

p(X|α) =
∫

p
p(X,p|α) (14)

=
Γ(
∑

k αk)
∏

k Γ(αk)

∏

k Γ(Nk + αk)

Γ(
∑

k Nk + αk)

∫

p
D(p;Nk + αk) (15)

=
Γ(
∑

k αk)

Γ(N +
∑

k αk)

∏

k

Γ(Nk + αk)

Γ(αk)
(16)

which is the probability that this data all came from one multinomial distribution.
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For example:

p(X|αk = 1/2) =
Γ(K/2)

Γ(N +K/2)Γ(1/2)K
∏

k

Γ(Nk + 1/2) (with Jeffreys’ prior) (17)

p(X|αk = 1) =
Γ(K)

Γ(N +K)

∏

k

Γ(Nk + 1) (with a uniform prior) (18)

=
1

(

N

N1..NK

)(

N+K−1
K−1

) (19)

The posterior predictive distribution is

p(x = k|X, α) = E[pk|X] (20)

=
Nk + αk

N +
∑

k αk

(21)

=
Nk + 1/2

N +K/2
(with Jeffreys’ prior) (22)

=
Nk + 1

N +K
(with a uniform prior) (23)

By contrast, the maximum of the posterior is

p̂k =
Nk + αk − 1

N −K +
∑

k αk

(24)

=
Nk − 1/2

N −K/2
(with Jeffreys’ prior) (25)

=
Nk

N
(with a uniform prior) (26)

This is one example, among many, where the maximum a posteriori estimate can be worse
than the maximum likelihood estimate, even when the prior is correct. Using the posterior
predictive distribution to represent our knowledge of p was the main argument of Bayes (1763).
Formula (20) is sometimes mistakenly interpreted as saying that one should always use the
expected value of a parameter as the “Bayesian estimate,” which forgets that the posterior
predictive distribution is not always an expectation as it is for multinomials.

For predicting multiple samples, we let Mk be the counts for the new sample and get

p(Y|X, α) = p(Y,X|α)/p(X|α) (27)

=
Γ(N +

∑

k αk)

Γ(M +N +
∑

k αk)

∏

k

Γ(Mk +Nk + αk)

Γ(Nk + αk)
(28)

i.e. it is just as if the prior were D(Nk + αk). Note that the new samples are not independent:
we cannot use the posterior predictive distribution for one sample (equation (21)) as though it
was the true distribution.
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2 Samples vs. Counts

There is some confusion in the literature about when to use (2) versus (4). The preceding text
used (2), which is the correct choice for most tasks. The confusion stems from the misconception
that “the samples are equivalent to their counts.” The samples are not equivalent to their counts
because the samples occurred in some particular order. Every possible ordering has the same
probability but that doesn’t mean we should sum over orderings: the data only had one ordering.

For example, consider tossing a fair coin twice. The sample < H, T > has probability 1/4, as
does < H,H >. However, the count event {NH = 1, NT = 1} has probability 1/2, which is
greater than the probability of the count event {NH = 2}. The discrepancy arises because we
are considering a different event space. If someone told you that the sample had one head and
one tail and asked for the probability of that sample (not its counts), then the answer would be
1/4, since every sample with those counts has probability 1/4.

As another example, suppose we have N samples from a univariate Gaussian distribution. The
N -dimensional joint density of the samples only depends on the sample mean and sample vari-
ance of the sample; these are sufficient statistics. Every sample with the same sufficient statistics
has the same probability. However, the joint density of the sufficient statistics has only two di-
mensions, with a different normalizing term. Asking for the probability of a sample with given
sufficient statistics is not the same as asking for the probability of those statistics, which concerns
a different event space.

3 Evidence vs. Entropy

When the parameter vector p is uniform, it is well-known (Bishop, 1995) that the log-probability
of a set of counts can be approximated by the entropy of the ML estimate, i.e.

log Γ(x+ 1) ≈ x log(x)− x (29)

log p(N1..NK |pk = 1/K) = log

(

N

N1..NK

)

−N logK (30)

≈ N logN −N −
∑

k

(Nk logNk −Nk)−N logK (31)

= −
∑

k

Nk log
Nk

N
−N logK (32)

= NH(Nk/N)−N logK (33)

where H(p) = −
∑

k

pk log pk (34)

supporting the intuition that more entropic counts are more probable. Here it is crucial that we
compute the probability of counts; the probability of any particular sample is constant.
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There is a corresponding result for the evidence of a sample, when the parameter prior is uniform
(αk = 1). For a large sample, the evidence is approximately the negative entropy of the ML
estimate:

Γ(K)

Γ(N +K)
≈

Γ(K)

Γ(N + 1)NK−1
≈

1

Γ(N + 1)
(35)

log p(X|αk = 1) ≈ −N logN +N +
∑

k

(Nk logNk −Nk) (36)

=
∑

k

Nk log
Nk

N
(37)

= −NH(Nk/N) (38)

That is, less entropic samples are more probable. This is also clear from (19), which has

the multinomial coefficient
(

N

N1..NK

)

in the denominator rather than in the numerator. The
reason is that virtually all parameter vectors p exert a bias toward some particular outcome; a
homogeneous sample which contains only that outcome will be the most probable sample from
that parameter vector. So when we integrate over all p, we are left with a huge preference for
homogeneous samples. This didn’t happen before because we deliberately excluded all of these
biased parameter vectors.

Here it is crucial that we compute the evidence of the particular sample; the counts have constant
evidence (which is clear from (19)).

4 Mutual Information

Another information-theoretic quantity is mutual information, which arises in hypothesis testing.
Suppose we want to know the probability that two discrete random variables are independent.
We are given N (x, y) pairs, where x has J possible values and y has K possible values. The
data can be arranged in a table as in figure 1.

y = 1 y = 2 y = 3
x = 1 15 29 14
x = 2 46 83 56

Figure 1: Joint outcomes of two random variables x and y. Each cell reports the number of times
we saw the pair (x = j, y = k). What is the probability that the two variables are independent?

Under the hypothesis of independence, the probability of the data is

p(D|indep) = p(X|αj.)p(Y|α.k) (39)
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(αj. and α.k are two different prior vectors). The other hypothesis is that the variables are
dependent and arise from a multinomial distribution on pairs (x, y). This distribution has JK
possible values. Under this hypothesis, the probability of the data is

p(D|dep) = p((x1, y1), ..., (xN , yN)|αjk) (40)

(αjk is yet a third prior). What we want to know is

p(indep|D) =
p(D|indep)p(indep)

p(D|indep)p(indep) + p(D|dep)p(dep)
(41)

=
1

1 + p(D|dep)
p(D|indep)

p(dep)
p(indep)

(42)

The crucial quantity here is p(D|indep)
p(D|dep)

, the evidence ratio in favor of independence. Let

Njk =
N
∑

i=1

δ(xi = j)δ(yi = k) (43)

Nj. =
N
∑

i=1

δ(xi = j) =
K
∑

k=1

Njk N.k =
N
∑

i=1

δ(yi = k) =
J
∑

j=1

Njk (44)

αj. =
K
∑

k=1

αjk α.k =
J
∑

j=1

αjk (45)

then

p(X|α)p(Y|α)

p((x1, y1), ..., (xN , yN )|α)
=

Γ(
∑

jk αjk)

Γ(N +
∑

jk αjk)

J
∏

j=1

Γ(Nj. + αj.)

Γ(αj.)

K
∏

k=1

Γ(N.k + α.k)

Γ(α.k)

∏

jk

Γ(αjk)

Γ(Njk + αjk)
(46)

Using the entropy approximation (38), the logarithm of this ratio is

log
p(D|indep)

p(D|dep)
≈ −NH(

Nj.

N
)−NH(

N.k

N
) +NH(

Njk

N
) (47)

= −ND(
Njk

N
||
Nj.

N
×

N.k

N
) (48)

= −NI(x, y) (49)

where D(p || q) =
∑

k

pk log
pk
qk

(50)

It measures the information we gain about y from knowing x; if we gain a lot of information,
then the variables are dependent. This result was obtained in a similar way by Wolf (1994); he
used an event space of counts instead of samples but the answers are the same. Unfortunately,
the mutual information score (49) is biased toward the hypothesis of dependence; it can never
be positive and reaches zero only if the empirical joint distribution factors precisely into the
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marginals, a case in which (46) would strongly favor independence. Mutual information can still
be used for testing; it’s just that the result cannot be interpreted as a probability. The orthodox
literature also uses mutual information to test for independence; see e.g. the “G-test” of Sokal
& Rohlf (1969; sec 16.4). But the orthodox derivation and interpretation is quite different. In
fact, many books consider the mutual information score to be arbitrary and prefer instead the
χ2 score, which is the same as (48) but using

D(p || q) ≈
∑

k

(pk − qk)
2

2qk
(51)

With αjk = 1 and p(indep) = 1/2 on the table in figure 1, the logarithm of (46) is 3.28, which
favors independence by 26 : 1. The mutual information and χ2 tests yield values of −0.43 and
−0.42, respectively.

A closely related problem is the test for homogeneity: we want to know the probability that
two samples X and Y came from the same multinomial distribution vs. different multinomial
distributions. That is, we want

p(same|X,Y) =
p(X,Y|same)p(same)

p(X,Y|same)p(same) + p(X,Y|different)p(different)
(52)

=
1

1 + p(X,Y|different)
p(X,Y|same)

p(different)
p(same)

(53)

The quantity p(X,Y|different)
p(X,Y|same)

is the evidence ratio in favor of difference, which is

p(X|α)p(Y|α)

p(X,Y|α)
=

Γ(
∑

k αk)Γ(M +N +
∑

k αk)

Γ(M +
∑

k αk)Γ(N +
∑

k αk)

∏

k

Γ(Mk + αk)Γ(Nk + αk)

Γ(αk)Γ(Mk +Nk + αk)
(54)

This formula was also examined by Wolpert (1995). Using the entropy approximation (38), the
logarithm of this ratio is

log
p(X|α)p(Y|α)

p(X,Y|α)
≈ −MH(

Mk

M
)−NH(

Nk

N
) + (M +N)H(

Mk +Nk

M +N
) (55)

= MD(
Mk

M
||
Mk +Nk

M +N
) +ND(

Nk

N
||
Mk +Nk

M +N
) (56)

where D(p || q) =
∑

k

pk log
pk
qk

(57)

This “average divergence to the mean” is known in information theory as Jensen-Shannon di-
vergence (Lin, 1991) (El-Yaniv et al, 1997):

Dλ(p1, p2) = λD(p1 || q) + (1− λ)D(p2 || q) (58)

q = λp1 + (1− λ)p2 (59)
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Another way to solve this problem is to write it as a test for independence. Let the random
variable c ∈ {1, 2} indicate which data set an observation x came from. If the two distributions
are the same, then c and x are independent. So we can apply (46) to the following table:

x = 1 x = 2 · · · x = K
c = 1 N1 N2 · · · NK

c = 2 M1 M2 · · · MK

The result is slightly different from (54), because of different Dirichlet priors. But the entropy
approximation is the same and reduces to the mutual information between x and c.

5 Discrete Markov chains

A Markov chain is a sequence of random variables xi such that the conditional distribution
p(xi|xi−1, ..., x1) is actually p(xi|xi−1). The present is sufficient to determine the future. In a
discrete Markov chain, the conditional distribution is multinomial. The probability of a sequence
X = < x1, ..., xN > is therefore

p(X|P) = p(x1)
N
∏

i=2

p(xi|xi−1,P) (60)

where the matrix P denotes the parameters of the conditional distribution. Another way to
write this involves partitioning the xi according to the value that preceded them, i.e.

X = {x1} ∪X1 ∪X2 ∪ ... ∪XK (61)

where Xk = {xi|xi−1 = k} (62)

Define N.k to be the cardinality of Xk. Each member of Xk was independently chosen from the
multinomial distribution p(xi|xi−1 = k,P). This distribution is parameterized by K numbers
which we will store in pk, the kth column of P. In other words, p(xi = j|xi−1 = k,P) = pjk by
definition. Using this notation, we get

p(X|P) = p(x1)
K
∏

k=1

p(Xk|pk) (63)

= p(x1)
K
∏

k=1

K
∏

j=1

p
Njk

jk (64)

where Njk =
N
∑

i=2

δ(xi = j)δ(xi−1 = k) (65)

A conjugate prior for pk is

p(pk) ∼ D(α1k, ..., αKk) = D(αjk) (as shorthand) (66)
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The prior for the whole matrix P is therefore

p(P) =
∏

k

p(pk) (67)

=

∏

k Γ(
∑

j αjk)
∏

jk Γ(αjk)

∏

jk

p
αjk−1
jk (68)

The joint distribution comes from combining (64) and (68):

p(X,P|α) = p(x1)
K
∏

k=1

p(Xk,pk|α) (69)

= p(x1)

∏

k Γ(
∑

j αjk)
∏

jk Γ(αjk)

∏

jk

p
Njk+αjk−1
jk (70)

so the posterior is

p(P|X, α) =
∏

k

p(pk|X
k, α) (71)

=
∏

k

D(N1k + α1k, ..., NKk + αKk) (72)

=
∏

k

D(Njk + αjk) (shorthand) (73)

and the evidence is

p(X|α) =
∫

P
p(X,P|α) (74)

= p(x1)
K
∏

k=1

∫

pk

p(Xk,pk|α) (75)

= p(x1)
K
∏

k=1

p(Xk|α) (76)

= p(x1)
K
∏

k=1





Γ(
∑

j αjk)

Γ(N.k +
∑

j αjk)

∏

j

Γ(Njk + αjk)

Γ(αjk)



 (77)

which is a product of ordinary multinomial evidences.

The posterior predictive distribution is

p(xN+1 = j|xN = k,X, α) = E[pjk|X] (78)

=
Njk + αjk

N.k +
∑

j αjk

(79)
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For predicting multiple samples, we let Mjk be the counts for the new sample and get

p(Y|X, α) = p(Y,X|α)/p(X|α) (80)

=
∏

k

p(Yk|Xk, αjk) (81)

=
∏

k





Γ(
∑

j Njk + αjk)

Γ(
∑

j Mjk +Njk + αjk)

∏

j

Γ(Mjk +Njk + αjk)

Γ(Njk + αjk)



 (82)

which is a product of ordinary posterior predictive distributions.

5.1 Testing for Markovianity

The hypothesis testing technique in section 4 can be used to determine if we have a true Markov
chain or just a sequence of IID random variables. Under the hypothesis of independence, the
sets Xk all came from the same distribution. Therefore this question is identical to the “same vs.
different” question examined in section 4. Let the prior for the single distribution be Dirichlet
with parameters βj. Then the evidence for independence comes from applying (16):

Nj. =
∑

i

δ(xi = j) =
∑

k

Njk (83)

p(X|β, independence) = p(x1)
Γ(
∑

j βj)

Γ(N − 1 +
∑

j βj)

∏

j

Γ(Nj. + βj)

Γ(βj)
(84)

If αjk = βj = 1, then the evidence ratio in favor of independence is

p(X|βj = 1, independence)

p(X|αjk = 1)
=

∏

k Γ(N.k +K)

Γ(K)K−1Γ(N − 1 +K)

∏

j

Γ(Nj. + 1)
∏

k Γ(Njk + 1)
(85)

For example, suppose X =< 1, 2, 1, 2, ..., 1, 2 >. The counts are

Njk =
[

0 N/2− 1
N/2 0

]

Nj. =
[

N/2− 1
N/2

]

(86)

and the evidence ratio is
Γ(N/2 +K)Γ(N/2− 1 +K)

Γ(K)K−1Γ(N − 1 +K)
(87)

which is extremely small as K and N increase, implying the variables must be dependent.

Using the entropy approximation, we can approximate the logarithm of the evidence ratio as

−(N − 1)H(
Nj.

N − 1
) +

K
∑

k=1

N.kH(
Njk

N.k

) =
K
∑

k=1

N.kD(
Njk

N.k

||
Nj.

N − 1
) (88)
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which is again an “average divergence to the mean” that can be written as mutual information:

log
p(X|βj = 1, independence)

p(X|αjk = 1)
≈ −(N − 1)H(xi) + (N − 1)

K
∑

k=1

p(xi−1 = k)H(xi|xi−1 = k) (89)

= −(N − 1)H(xi) + (N − 1)H(xi|xi−1) (90)

= −(N − 1)I(xi, xi−1) (91)

If we gain a lot of information about xi from knowing xi−1, then it is probably a Markov chain.
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