
Expectation Propagation for Approximate Bayesian Inference

Thomas P Minka
Statistics Dept.

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper presents a new deterministic approx-
imation technique in Bayesian networks. This
method, “Expectation Propagation,” unifies two
previous techniques: assumed-density filtering,
an extension of the Kalman filter, and loopy be-
lief propagation, an extension of belief propaga-
tion in Bayesian networks. Loopy belief propa-
gation, because it propagates exact belief states,
is useful for a limited class of belief networks,
such as those which are purely discrete. Expec-
tation Propagation approximates the belief states
by only retaining expectations, such as mean and
variance, and iterates until these expectations are
consistent throughout the network. This makes it
applicable to hybrid networks with discrete and
continuous nodes. Experiments with Gaussian
mixture models show Expectation Propagation to
be convincingly better than methods with simi-
lar computational cost: Laplace’s method, vari-
ational Bayes, and Monte Carlo. Expectation
Propagation also provides an efficient algorithm
for training Bayes point machine classifiers.

1 INTRODUCTION

Bayesian inference is often hampered by large computa-
tional expense. Fast and accurate approximation methods
are therefore very important and can have great impact.
This paper presents a new deterministic algorithm, Expec-
tation Propagation, which achieves higher accuracy than
existing approximation algorithms with similar computa-
tional cost.

Expectation Propagation is an extension of assumed-
density filtering (ADF), a one-pass, sequential method for
computing an approximate posterior distribution. In ADF,
observations are processed one by one, updating the pos-
terior distribution which is then approximated before pro-
cessing the next observation. For example, we might re-
place the exact one-step posterior with a Gaussian having
the same mean and same variance (Maybeck, 1982; Opper
& Winther, 1999). Or we might replace a posterior over
many variables with one that renders the variables inde-
pendent (Boyen & Koller, 1998). The weakness of ADF
stems from its sequential nature: information that is dis-
carded early on may turn out to be important later. ADF is
also sensitive to observation ordering, which is undesirable
in a batch context.

Expectation Propagation (EP) extends ADF to incorporate
iterative refinement of the approximations, by making ad-
ditional passes through the network. The information from
later observations refines the choices made earlier, so that
the most important information is retained. Iterative refine-
ment has previously been used in conjunction with sam-
pling (Koller et al., 1999) and extended Kalman filtering
(Shachter, 1990). Expectation Propagation is faster than
sampling and more general than extended Kalman filtering.
It is more expensive than ADF by only a constant factor—
the number of refinement passes (typically 4 or 5). EP ap-
plies to all statistical models to which ADF can be applied
and, as shown in section 3.2, is significantly more accurate.

In belief networks with loops it is known that approximate
marginal distributions can be obtained by iterating the be-
lief propagation recursions, a process known as loopy be-
lief propagation (Frey & MacKay, 1997; Murphy et al.,
1999). In section 4, this turns out to be a special case of Ex-
pectation Propagation, where the approximation is a com-
pletely disconnected network. Expectation Propagation is

more general than belief propagation in two ways: (1) like
variational methods, it can use approximations which are
not completely disconnected, and (2) it can impose useful
constraints on functional form, such as multivariate Gaus-
sian.

2 ASSUMED-DENSITY FILTERING

This section reviews the idea of assumed-density filter-
ing (ADF), to lay groundwork for Expectation Propaga-
tion. Assumed-density filtering is a general technique for
computing approximate posteriors in Bayesian networks
and other statistical models. ADF has been indepen-
dently proposed in the statistics (Lauritzen, 1992), artifi-
cial intelligence (Boyen & Koller, 1998; Opper & Winther,
1999), and control (Maybeck, 1982) literatures. “Assumed-
density filtering” is the name used in control; other names
include “online Bayesian learning,” “moment matching,”
and “weak marginalization.” ADF applies when we have
postulated a joint distribution ���������
	 where � has been
observed and � is hidden. We would like to know the pos-
terior over � , ������ ��	 , as well as the probability of the ob-
served data (or evidence for the model), ������	 . The former
is useful for estimation while the latter is useful for model
selection.

For example, suppose we have observations from a Gaus-
sian distribution embedded in a sea of unrelated clutter, so
that the observation density is a mixture of two Gaussians:������ �
	�� ��������	�������� �!�#"$	&%'���������#(
�$�*)+"$	��������,-��./	0� 13254 ����67 ���8��,9	�:;.8< 6 ������,=	 	 >@?;.' 6�A 7
The first component contains the parameter of interest,
while the other component describes clutter. � is the
known ratio of clutter. Let the B -dimensional vector � have
a Gaussian prior distribution:�����
	�C ���D(
�$�*)+)+"FEF	 (1)

The joint distribution of � and G independent observations�H�JI*� 6 �FKLKMKL���ONQP is therefore:�����R� �
	�� �����
	TS@UV����� U �
	 (2)

The Bayesian network for this problem is simply � pointing
to the � U

. But we cannot use belief propagation because the
belief state for � is a mixture of > N Gaussians. To apply
ADF, we write the joint distribution �����R� �
	 as a product

of terms: ���D��� �
	/�XW UZY U ���
	 where
Y\[���
	��]�����
	 andY U ���
	��'����� U �
	 . Next we choose an approximating family.

In the clutter problem, a spherical Gaussian distribution is
reasonable: ^ ���
	�C9����,`_5��aZ_+" E 	 (3)

Finally, we sequence through and incorporate the terms
Y U

into the approximate posterior. At each step we move from
an old

^Zb U ���
	 to a new
^ ���
	 . (To reduce notation, we drop

the dependence of
^ ���
	 on c .) Initialize with

^ ���
	/�d� .
Incorporating the prior term is trivial, with no approxima-
tion needed. To incorporate a more complicated term

Y U ���
	 ,
take the exact posteriore�����
	�� Y U ���
	 ^Zb U ���
	fFg Y U ���
	 ^ b U ���
	 B � (4)

and minimize the KL-divergence �8� e�����
	$M ^ ���
	 	 subject to
the constraint that

^ ���
	 is in the approximating family. This
is equivalent to a maximum-likelihood problem with data
distribution

e� . For a spherical Gaussian, the solution is
given by matching moments:h iZj �lkm� h nopj �lk (5)

h i j � : �lkm� h no j � : �lk (6)

With any exponential family, ADF reduces to propagating
expectations. Each step also produces a normalizing factorq U � f g Y U ���
	 ^Zb U ���
	 B � . The product of these normalizing
factors estimates ������	 . In the clutter problem, we haveq U �r� �s�t��	������ U �#, b U_ �F��a b U_ %u�*	 "$	#%v������� U �#(
�$�*)+"$	 (7)

The final ADF algorithm is:

1. Initialize ,`_`�w(, aZ_x�y�F)s) (the prior). Initializez{��� (the scale factor).

2. For each data point � U
, update ��, _ � a _ �#z|	 according

toz}� z b U!~ q U
� U � ��� �q U ������� U ��(O�F�F)s"$	

,`_�� , b U_ %`a b U_ � U � U ��, b U_a b U_ %-�a _ � a b U_ ��� U ��a b U_ 	 7a b U_ %�� %`� U ������� U 	 ��a b U_ 	 7s� � U ��, b U_ �37B ��a b U_ %��*	 7
This algorithm can be understood in an intuitive way: for
each data point we compute its probability � of not being
clutter, make a soft update to our estimate of � (, _), and

change our confidence in the estimate (a _). However, it is
clear that this algorithm will depend on the order in which
data is processed, because the clutter probability depends
on the current estimate of � .

3 EXPECTATION PROPAGATION

This section describes the Expectation Propagation algo-
rithm and demonstrates its use on the clutter problem. Ex-
pectation Propagation is based on a novel interpretation of
assumed-density filtering. ADF was described as treating
each observation term

Y U
exactly and then approximating

the posterior that includes
Y U

. But we can also think of it as
first approximating

Y U
with some �Y U and then using an exact

posterior with �Y U . This interpretation is always possible be-
cause we can define the approximate term �Y U to be the ratio
of the new posterior to the old posterior times a constant:�Y U ���
	�� q U ^ ���
	^ b U ���
	 (8)

Multiplying this approximate term by
^sb U ���
	 gives

^ ���
	 , as
desired. An important property is that if the approximate
posterior is in an exponential family, then the term approx-
imations will be in the same family.

The algorithm of the previous section can thus be inter-
preted as sequentially computing a Gaussian approxima-
tion �Y U ���
	 to every observation term

Y U ���
	 , then combining
these approximations analytically to get a Gaussian poste-
rior on � . Under this perspective, the approximations do
not have any required order—the ordering only determined
how we made the approximations. We are free to go back
and refine the approximations, in any order. This gives the
general form of Expectation Propagation:

1. Initialize the term approximations �Y U
2. Compute the posterior for � from the product of �Y U :^ ���
	�� W U �Y U ���
	f W U �Y U ���
	 B � (9)

3. Until all �Y U converge:

(a) Choose a �Y U to refine
(b) Remove �Y U from the posterior to get an ‘old’ pos-

terior
^+b U ���
	 , by dividing and normalizing:^ b U ���
	�� ^ ���
	�Y U ���
	 (10)

(c) Combine
^+b U ���
	 and

Y U ���
	 and minimize KL-
divergence to get a new posterior

^ ���
	 with nor-
malizer

q U
.

(d) Update �Y U � q U ^ ���
	#� ^Zb U ���
	 .
4. Use the normalizing constant of

^ ���
	 as an approxi-
mation to ������	 :������	����HS U �Y U ���
	 B � (11)

This algorithm always has a fixed point, and sometimes has
several. If initialized too far away from a fixed point, it may
diverge. This is discussed in section 3.3.

3.1 THE CLUTTER PROBLEM

For the clutter problem of the previous section, the EP al-
gorithm is

1. The term approximations have the form�Y U ���
	���z U 13254 ��� �>Za U ���/��, U 	 : ���/��, U 	 	 (12)

Initialize the prior term to itself: a [���F)s) , , [��(,z [����>@?;a [< E A 7 . Initialize the data terms so that�Y U ���
	���� : a U ��� , , U ��(, and z U �r� .

2. , _ ��, [� a _ ��a [
3. Until all �D, U � a U �#z U 	 converge (changes are less than�*) <T�):

loop c �r�+�FKLKMKL� G :

(a) Remove �Y U from the posterior to get an ‘old’ pos-
terior:��a b U_ 	 < 6 � a < 6_ ��a < 6U, b U_ � , _ %'a b U_ a < 6U ��, _ ��, U 	

(b) Recompute ��, _ � a _ � q U 	 from ��, b U_ � a b U_ 	 as in
ADF.

(c) Update �Y U :a < 6U � a < 6_ ����a b U_ 	 < 6, U � , b U_ %���a U %`a b U_ 	3��a b U_ 	 < 6 ��, _ ��, b U_ 	z U � q U�D>Z?;a U 	 E A 7 ����, U ��, b U_ �F��a U %'a b U_ 	 "$	

4. Compute the normalizing constant:� � , : _ , _aZ_ �`�pU , : U , Ua U������	�� ��>@?;aZ_s	 E A 7 13254 � � �Z>s	 NSUM� [z U
Because the term approximations start at � , the result after
one pass through the data is identical to ADF.

3.2 RESULTS

EP for the clutter problem is compared with four other
algorithms for approximate inference: Laplace’s method,
variational Bayes, importance sampling (using the prior as
the importance distribution), and Gibbs sampling (by in-
troducing hidden variables that determine if a data point is
clutter). The goal is to estimate the evidence ������	 and the
posterior mean

h j �� ��k . Figure 1 shows the results on a
typical run with G ��>+) and with G �J>Z)s) . It plots the ac-
curacy vs. cost of the algorithms. Accuracy is measured by
absolute difference from the true evidence or the true poste-
rior mean. Cost is measured by the number of floating point
operations (FLOPS) in Matlab, via Matlab’s flops func-
tion. This is better than using CPU time because FLOPS
ignores interpretation overhead.

The deterministic methods EP, Laplace, and VB all try to
approximate the posterior with a Gaussian, so they improve
substantially with more data (the posterior is more Gaus-
sian with more data). The sampling methods assume very
little about the posterior and cannot exploit the fact that it
is becoming more Gaussian. However, this is an advan-
tage for sampling when the posterior has a complex shape.
Figure 2 shows an atypical run with a small amount of
data (G ��>Z)) where the true posterior has three distinct
modes. Regular EP did not converge, but a restricted ver-
sion did (Minka, 2001). Unfortunately, all of the determin-
istic methods converge to an erroneous result that captures
only a single mode.

3.3 CONVERGENCE

The EP iterations can be shown to always have a fixed
point when the approximations are in an exponential fam-
ily. The proof is analogous to Yedidia et al. (2000). Let
the sufficient statistics be � 6 ���
	��FKLKMKM� �Z� ���
	 so that the fam-
ily has form 13254 ��� �� � 6 � � ���
	 � 	 . In the clutter problem

102 103 104 105 106
10−23

10−22

10−21

10−20

10−19

10−18

10−17

EP

VB

Laplace

Importance

Evidence

FLOPS

E
rr

or

103 104 105 106 107
10−205

10−204

10−203

10−202

10−201

10−200

10−199

EP

VB

Laplace

Importance

Evidence

FLOPS

E
rr

or

G ��>Z) G ��>Z)+)

102 103 104 105 106
10−6

10−5

10−4

10−3

10−2

10−1

100

EP

Laplace VB

Importance

Gibbs

Posterior mean

FLOPS

E
rr

or

103 104 105 106 107
10−6

10−5

10−4

10−3

10−2

10−1

100

EP

Laplace

VB

Importance

Gibbs

Posterior mean

FLOPS

E
rr

or

G ��>Z) G ��>Z)+)
Figure 1: Cost vs. accuracy curves for expectation prop-
agation (EP), Laplace’s method, variational Bayes (VB),
importance sampling, and Gibbs sampling on the clutter
problem with ����)¡K£¢ and �8��> . Each ‘x’ is one iteration
of EP. ADF is the first ‘x’.

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

7

8
x 10−26

theta

p(
th

et
a,

D
)

Exact
EP
VB
Laplace

102 103 104 105 106
10−2

10−1

100

101

EP

Laplace

VB

Importance

Gibbs

Posterior mean

FLOPS

E
rr

or

(a) (b)

Figure 2: A complex posterior in the clutter problem.
(a) Exact posterior vs. approximations obtained by EP,
Laplace’s method, and variational Bayes. (b) Cost vs. ac-
curacy.

we had � 6 ���
	��¤� and � 7 ���
	��¤� : � . When we treat
the prior exactly, the final approximation will be

^ ���
	�������
	 13254 ��� � � � ���
	 ¥ � 	 for some ¥ , and the leave-one-out
approximations will be

^+b U ���
	¦�������
	 13254 ��� � � � ���
	 U � 	
for some . Let G be the number of terms

Y U ���
	 .
The EP fixed points are in one-to-one correspondence with
stationary points of the objective§�¨M©ª §�« 2¬ � G �x�*	5L®s¯ � g �����
	 1$254 � � � � � ���
	 ¥ � 	 B �

� N� UM� 6 L®s¯°� g Y U ���
	±�����
	 13254 ��� � � � ���
	 U � 	 B � (13)

such that � G �x�*	�¥ � ��� U U � (14)

Note that min-max cannot be exchanged with max-min in
this objective. By taking derivatives we get the stationary
conditions

fFg � � ���
	 ^ ���
	 B ��� fFg � � ���
	 e�����
	 , where
e�����
	 is

defined by (4). This is an EP fixed point. In reverse, given
an EP fixed point we can recover ¥ and from

^ ���
	 and^Zb U ���
	 to obtain a stationary point of (13).

Assume all terms are bounded:
Y U ���
	�²]³ . Then the ob-

jective is bounded from below, because for any ¥ we can
choose U � � N < 6N ¥ � , and then the second part of (13) is at
least � G M®+¯�� g ³\�����
	 13254 ��� � � � ���
	�¥ � 	Z´Zµ·¶´ B �¸ � G M®+¯�³°�x� G �=�|	¹L®s¯°� g �����
	 13254 ��� � � � ���
	 ¥ � 	 B �
by the concavity of the function º ´Zµ·¶´ . Therefore there
must be stationary points. Sometimes there are multiple
fixed points of EP, in which case we can define the ‘best’
fixed point as the one with minimum energy (13). When
canonical EP does not converge, we can minimize (13) by
some other scheme, such as gradient descent. In practice, it
is found that when canonical EP does not converge, it is for
a good reason, namely the approximating family is a poor
match to the exact posterior. This happened in the previous
example. So before considering alternate ways to carry out
EP, one should reconsider the approximating family.

4 LOOPY BELIEF PROPAGATION

Expectation Propagation and assumed-density filtering can
be used to approximate a belief network by a simpler net-

work with fewer edges. This section shows that if the ap-
proximation is completely disconnected, then ADF yields
the algorithm of Boyen & Koller (1998) and EP yields
loopy belief propagation.

Let the hidden variables be » 6 �$KMKLKM� »Q¼ and collect the ob-
served variables into �½��I º 6 �$KMKLKM� ºs¾ P . A completely dis-
connected distribution for � has the form^ ���
	°� ¼S¿ � 6 ^ ¿ � » ¿ 	 (15)

When we minimize the KL-divergence �R� e�����
	$M ^ ���
	 	 , we
will simply preserve the marginals of

e�����
	 . This cor-
responds to an expectation constraint

h i j À � » ¿ ��a5	�k��h no j À � » ¿ �Va5	�k for all values a of » ¿ . From this we arrive at
the ADF algorithm of Boyen & Koller (1998):

1. Initialize
^ ¿ � » ¿ 	����

2. For each term
Y U ���
	 in turn, set

^ ¿ to the Á th marginal
of

e� :^ ¿ � » ¿ 	0� �g b _|Â e�����
	�� �q U �g b _*Â Y U ���
	 ^ b U ���
	
where

q U � � g Y U ���
	 ^ b U ���
	
For dynamic Bayesian networks, Boyen & Koller set

Y U
to

the product of all of the conditional probability tables for
timeslice c . Now let’s turn this into an EP algorithm. From
the ratio

^ � ^+b U , we see that the approximate terms �Y U ���
	 are
completely disconnected. The EP algorithm is thus:

1. �Y U ���
	�� W ¿ �Y U ¿ � » ¿ 	 . Initialize �Y U ���
	��J� .

2.
^ ¿ � » ¿ 	�� W U �Y U ¿ � » ¿ 	

3. Until all �Y U converge:

(a) Choose a �Y U to refine
(b) Remove �Y U from the posterior. For all Á :^ b U¿ � » ¿ 	�� ^ ¿ � » ¿ 	�Y U ¿ � » ¿ 	 � S�|Ã�OU �Y � ¿ � » ¿ 	
(c) Recompute

^ ���
	 from
^+b U ���
	 as in ADF.

(d) �Y U ¿ � » ¿ 	�� q U ^ ¿ � » ¿ 	^ b U¿ � » ¿ 	 �Ä�g b _*Â Y U ���
	&S�|Ã� ¿ ^ b U� � » � 	

To make this equivalent to belief propagation, the original
terms

Y U
should correspond to the conditional probability

tables of a directed belief network. That is, we should break
the joint distribution �����R� �
	 into���������
	���S ¿ ��� » ¿ 4 «T� » ¿ 	 	TS � ��� º � 4 «p� º � 	�	 (16)

where 4 «¡��Å�	 is the set of parents of node Å . The network
has observed nodes º � and hidden nodes » ¿ . The parents of
an observed node might be hidden, and vice versa. For an
undirected network, the terms are the clique potentials. The
quantities in EP now have the following interpretations:Æ ^ ¿ � » ¿ 	 is the belief state of node » ¿ , i.e. the product

of all messages into » ¿ .Æ The ‘old’ posterior
^ b U¿ � » ¿ 	 for a particular term c is a

partial belief state, i.e. the product of messages into» ¿ except for those originating from term c .Æ When cÈÇ� Á , the function �Y U ¿ � » ¿ 	 is the message that
node c (either hidden or observed) sends to its par-
ent » ¿ in belief propagation. For example, suppose
node c is hidden and

Y U ���
	��9��� » U 4 «T� » U 	�	 . The other
parents send their partial belief states, which the child
combines with its partial belief state:�Y U ¿ � º 	�� �g b _*Â ��� » U 4 «p� » U 	 	 ^ b UU � » U 	 S

parents �|Ã� ¿ ^ b U� � » � 	

ÉQÊ#ËË/Ì�Í Ë Î

ÉQÊ#ËÏ Ì\Í Ï ÎÐÑ Ë±Ò
Í Ë

Í Ò Í Ï

Æ When node c is hidden, the function �Y UMU � » U 	 is a com-
bination of messages sent to node c from its parents in
belief propagation. Each parent sends it partial belief
state, and the child combines them according to�Y ULU � » U 	�� �Ó$ÔFÕ _*Ö�× ��� » U 4 «T� » U 	�	 S

parents � ^ b
U� � » � 	

Ø Ë
ÙÚ ËÛË

Ü Ê#ËÒVÝ Ø Ò·Þ Ü Ê#ËÏ Ý Ø Ï ÞØ Ò Ø Ï

Unlike Pearl’s derivation of belief propagation in terms of and ? messages, this derivation is symmetric with respect
to parents and children. In fact, it is the form used in in fac-
tor graphs (Kschischang et al., 2000). All of the nodes that
participate in a conditional probability table ����Åx 4 «p��Å�	�	
send messages to each other based on their partial belief
states.

Loopy belief propagation does not always converge, but
from section 3.3 we know how we could find a fixed point.
For an undirected network with pairwise potentials, the EP
energy function (13) is a dual representation of the Bethe
free energy given by Yedidia et al. (2000).

Alternatively, we can fit an approximate network which is
not completely disconnected, such as a tree-structured net-
work. This was done in the ADF context by Frey et al.
(2000). A general algorithm for tree-structured approxima-
tion using EP is given by Minka (2001).

5 BAYES POINT MACHINE

This section applies Expectation Propagation to inference
in the Bayes Point Machine (Herbrich et al., 1999). The
Bayes Point Machine (BPM) is a Bayesian approach to
linear classification. A linear classifier classifies a point� according to º � sign ��ß : �
	 for some parameter vec-
tor ß (the two classes are º �½à¦�). Given a training set�X�½I·��� 6 � º 6 	3�$KMKLKM�F��� N � º N 	�P , the likelihood for ß can be
written�����8 ß�	�� S U ��� º U � U ��ß�	���S U�á � º U ß : � Uâ 	 (17)á ��ã¹	0� �`ä<lå ����ãT��)p�$�|	 B ã (18)

By using á instead of a step function, this likelihood tol-
erates small errors. The allowed ‘slack’ is controlled by â .
To avoid estimating â , which is tangential to this paper, the

experiments all use âçæ) , where á becomes a step func-
tion. The BPM is a hybrid belief network, with ß and � U
pointing to � U

. Under the Bayesian approach, we also have
a prior distribution on ß , which is taken to be ���D(
��"$.
Given this model, the optimal way to classify a new data
point � is to vote all classifiers according to their poste-
rior probability:

h j sign ��ß : �
	F �èk . As an approximation
to this, the BPM uses the output of the average classifier:
sign � h j ß�k : �
	 .
Using EP, we can make a multivariate Gaussian approx-
imation to the posterior over ß and use its mean as the
estimated Bayes point. The resulting algorithm is similar
to that for the clutter problem. To save notation, º U � U � â is
written simply as � U

.

1. �Y U ��ß�	��rz U 1$254 ��� 67#é Ö ��ß : � U �'ê U 	 7 	 . Initialize witha U ��� , ê U �-) , z U ��� .

2.
^ ��ß�	ë�}����,9ì���.�ì!	 . Initialize with the prior:,`ì8��(
� .�ì��-" .

3. Until all ��ê U � a U 	 converge (changes are less than�*) <T�):

loop c �r�+�FKLKMKL� G :

(a) Remove �Y U from the posterior to get an ‘old’ pos-
terior:. b Uì � .�ì/% ��.�ì�� U 	$��.Vì&� U 	 :a U ��� :U .�ì�� U, b Uì � , ì %���. b Uì � U 	\a < 6U ��� : U , ì ��ê U 	

(b) Recompute ��, ì � . ì 	 from ��, b Uì � . b Uì 	 , using
ADF:ã U � ��, b Uì 	 : � Uí � : U . b Uì � U %-�î U � �í � : U . b Uì � U %-� ���Dã U �#)¡�$�|	á ��ã U 	, ì � , b Uì %`. b Uì î U � U
.�ì � ïèð�ñò�ó�ô ïèð�ñò�õ ñ�ö�÷!ø Ö�ù úFûÖ5ü�ýlþ ø Ö�ÿú ûÖ���� Öý úFÖ þ�� � ô ï�ð ñò°õ ñDö��

(c) Update �Y U :a U � � : U . b Uì � U %-�î U ��� : U , ì %`î U 	 ��� :U . b Uì � U
ê U � � : U , b Uì %���a U %`� :U . b Uì � U 	�î U

z U � á �Dã U 	 í ��%`a < 6U � : U . b Uì � U
13254 � � 67 g ûÖ�	 � Öý g Ö�
 6g ûÖ�� ý
� Ö î U 	

4.
� ��, :ì . < 6ì ,`ì�� � U����Öé Ö������	�� .Vì� 6�A 7 13254 � � �Z>s	 W NUL� 6 z U

This algorithm processes each data point in � � B 7 	 time.
Assuming the number of iterations is constant, which
seems to be true in practice, computing the Bayes point
therefore takes � � GOB 7 	 time. This algorithm can be ex-
tended to use an arbitrary inner product function, just as
in Gaussian process classifiers and the Support Vector Ma-
chine, which changes the running time to � � G�� 	 , regard-
less of dimensionality. This extension can be found in
Minka (2001). Interestingly, Opper & Winther (2000) have
derived an equivalent algorithm using statistical physics
methods. However, the EP updates tend to be faster than
theirs and do not require a stepsize parameter.

5.1 RESULTS

Figure 3(a) demonstrates the Bayes point classifier vs. the
SVM classifier on 3 training points. Besides the two di-
mensions shown here, each point had a third dimension set
at � . This provides a ‘bias’ coefficient � � so that the de-
cision boundary doesn’t have to pass through �D)¡�#)s	 . The
Bayes point classifier approximates a vote between all lin-
ear separators, ranging from an angle of)�� to ���s¢�� . The
Bayes point is an angle in the middle of this range.

Figure 3(b) plots cost vs. error for EP versus three other
algorithms for estimating the Bayes point: the billiard al-
gorithm of Herbrich et al. (1999), the TAP algorithm of
Opper & Winther (2000), and the mean-field (MF) algo-
rithm of Opper & Winther (2000). The error is measured
by Euclidean distance to the exact solution found by im-
portance sampling. The error in using the SVM solution is
also plotted for reference. Its unusually long running time
is due to Matlab’s quadprog solver. TAP and MF were
slower to converge than EP, even with a large initial step
size of)pK ¢ . As expected, EP and TAP converge to the same
solution.

Figure 4 compares the error rate of EP, Billiard, and SVM
on four datasets from the UCI repository (Blake & Merz,
1998). Each dataset was randomly split 40 times into a
training set and test set, in the ratio 60%:40%. In each trial,
the features were normalized to have zero mean and unit

SVM
Bayes

102 103 104 105 106
10−4

10−3

10−2

10−1

100

EP

Billiard

SVM

MF

TAP

FLOPS
E

rr
or

Figure 3: (left) Bayes point machine vs. Support Vec-
tor Machine on a simple data set. The Bayes point more
closely approximates a vote between all linear separators
of the data. (right) Cost vs. error in estimating the poste-
rior mean. ADF is the first ‘x’ on the EP curve.

Dataset EP Billiard SVM
Heart K£>Z)�� à-K)���� K >+)�� à�K)���� K£>��s>�à�K)����

Thyroid K)����°à�K)���� K)���� à-K)���� K)·¢�� à�K)��s¢
Ionosphere K)���� à�K)·¢�� KM�+��� à-K)���� KL�s�*¢�à-K)����

Sonar KM� �·) à-K)���� KL�!��� à�K)��Z> KM�*>�� à�K)��Z¢
Figure 4: Test error rate for the Bayes Point Machine (using
EP or the Billiard algorithm) compared to the Support Vec-
tor Machine. Reported is the mean over 40 train-test splitsà two standard deviations. These results are for a Gaussian
kernel with " �#� , and will differ with other kernels.

variance in the training set. The classifiers used zero slack
and a Gaussian inner product with standard deviation 3.
Billiard was run for 500 iterations. The thyroid dataset
was made into a binary classification problem by merging
the different classes into normal vs. abnormal. Except for
sonar, EP has lower average error than the SVM (with
99% probability), and in all cases EP is at least as good as
Billiard. Billiard has the highest running time because it is
initialized at the SVM solution.

6 SUMMARY

This paper presented a generalization of belief propagation
which is appropriate for hybrid belief networks. Its supe-
rior speed and accuracy were demonstrated on a Gaussian
mixture network and the Bayes Point Machine. Hopefully
it will prove useful for other networks as well. The Ex-
pectation Propagation iterations always have a fixed point,
which can be found by minimizing an energy function.

Acknowledgment

This work was performed at the MIT Media Lab, supported
by the Things That Think and Digital Life consortia.

References

Blake, C. L., & Merz, C. J. (1998). UCI repository of machine
learning databases.
www.ics.uci.edu/˜mlearn/MLRepository.html.

Boyen, X., & Koller, D. (1998). Tractable inference for complex
stochastic processes. Uncertainty in AI.

Frey, B. J., & MacKay, D. J. (1997). A revolution: Belief
propagation in graphs with cycles. NIPS 10.

Frey, B. J., Patrascu, R., Jaakkola, T., & Moran, J. (2000).
Sequentially fitting inclusive trees for inference in noisy-OR
networks. NIPS 13.

Herbrich, R., Graepel, T., & Campbell, C. (1999). Bayes point
machines: Estimating the Bayes point in kernel space. IJCAI
Workshop Support Vector Machines.

Koller, D., Lerner, U., & Angelov, D. (1999). A general
algorithm for approximate inference and its application to
hybrid Bayes nets. Uncertainty in AI (pp. 324–333).

Kschischang, F. R., Frey, B. J., & Loeliger, H.-A. (2000). Factor
graphs and the sum-product algorithm. IEEE Trans Info
Theory, to appear.
www.comm.toronto.edu/frank/factor/.

Lauritzen, S. L. (1992). Propagation of probabilities, means and
variances in mixed graphical association models. J American
Statistical Association, 87, 1098–1108.

Maybeck, P. S. (1982). Stochastic models, estimation and
control, chapter 12.7. Academic Press.

Minka, T. P. (2001). A family of algorithms for approximate
Bayesian inference. Doctoral dissertation, Massachusetts
Institute of Technology.
vismod.www.media.mit.edu/˜tpminka/.

Murphy, K., Weiss, Y., & Jordan, M. (1999). Loopy-belief
propagation for approximate inference: An empirical study.
Uncertainty in AI.

Opper, M., & Winther, O. (1999). A Bayesian approach to
on-line learning. On-Line Learning in Neural Networks.
Cambridge University Press.

Opper, M., & Winther, O. (2000). Gaussian processes for
classification: Mean field algorithms. Neural Computation,
12, 2655–2684.

Shachter, R. (1990). A linear approximation method for
probabilistic inference. Uncertainty in AI.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2000). Generalized
belief propagation (Technical Report TR2000-26). MERL.
www.merl.com/reports/TR2000-26/index.html.

